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Physical training effects GH/IGF-1 axis but not on regulating miRNAs

INTRODUCTION
The GH/IGF-1 axis is a system of growth mediators, receptors and 
binding proteins playing an important role in glucose homeostasis, 
growth of tissue and muscle hypertrophy [1,2]. It was documented 
that during the training cycle the GH/IGF-1 axis exhibits biphasic 
behaviour, beginning with a catabolic phase characterized by a reduc-
tion in hormone concentrations lasting 3 to 5 weeks, followed by an 
anabolic phase characterized by an increase in hormone concentra-
tions, after 5 to 6 weeks of training [3,4]. All types of exercise po-
tently stimulate the secretionof growth hormone (GH) and within 
approximately 10 to 20 min after onset of exercise, the plasma GH 
level starts to increase [5]. Insulin-like growth factor-1 (IGF-1), a poly-
peptide hormone with a homologous structure similar to proinsulin, 
mediates many of the somatic effects of growth hormone (GH). It is 
the most important downstream mediator of GH’s effect in most 
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tissue via IGF-1R and the insulin-like growth factor-binding proteins 
(IGFBPs) [6,7]. IGF-1 is synthesized in the liver and secreted into 
the blood, where it circulates as complexes associated with specific 
binding proteins (IGFBPs) [8]. This complex is regulated in both 
endocrine and tissue-specific auto- and paracrine manners. It was 
documented that IGFBPs may act as IGF-1 transporting proteins to 
target cells, but they are also able to modify the interaction between 
IGF-1 and its cellular receptors. Furthermore, IGFBPs may act inde-
pendently from IGF-I [9].

IGF-1 was identified as one of the key mediators of carbohydrate, 
lipid and protein metabolism, thus maintaining the body’s energy 
balance, which is important for athletes during systematic physical 
effort [10-12].
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use oxygen) is increased, especially during systematic endurance 
training. It was confirmed that GH secretion correlates positively with 
duration of exercise when intensity is constant. A linear dose-response 
relationship between exercise intensity and the GH secretory response 
was confirmed, with rising GH release across the range (25 to 175% 
VO2max of lactate threshold) [24].

Recent studies have documented that concentration of growth 
factors in body fluids may be regulated by miRNAs, which are rec-
ognized as gene expression regulators. Especially the IGF1/PI3K/
AKT/mTOR signalling pathway, which influences cardiac and skel-
etal muscle adaptation during exercises, may be regulated by various 
miRNAs [25]. The level of expression of particular miRNAs varies 
and may correlate with physiological indicators of adaptation to ex-
ercise, depending on the type of training and its duration [26,27]. 
Some of them – miRNA-124, miRNA-210 and miRNA-375 – may 
regulate molecules of the GH/IGF-1 axis.

MiRNA-375 is associated with the regulation of insulin secretion 
and glucose homeostasis. The overexpression of miRNA-375 in pan-
creatic cells impairs glucose-stimulated insulin secretion [28,29].

MiRNA-210 is involved in mitochondrial metabolism, angiogen-
esis, response to DNA damage, cell proliferation and apoptosis. Its 
expression is also induced during hypoxia, which plays an important 
role in the adaptive response to low oxygen levels [30].

MiRNA-124 stimulates the differentiation of embryonic nerve cells 
and astrocytes, and is involved in the process of neurodegeneration 
(Alzheimer’s and Parkinson’s disease). It has been shown to regulate 
IGFBP-1 and IGFBP-3 activity [28].

The aim of our study was to evaluate the IGFBP-3 immunoexpres-
sion level and expression level of miRNAs (miRNA-124, miRNA-210 
and miRNA-375) under the influence of physical training.

Assessment of the concentration of IGF-1 binding proteins, in 
addition to the level of the growth factor (IGF-1) itself, seems to be 
important in estimating the condition of the athlete’s training prepa-
ration as well as in assessing the possible effects of overtraining.

So far, six IGF-1 binding proteins (IGFBP-1 to IGFBP-6), which 
have different affinities for IGF-1, have been well studied. It was 
confirmed that IGFBP-3 is the main important binding protein for 
IGF-1 in serum, which may enhance or inhibit IGF activity. [10,13,14]. 
Interestingly, IGFBP-3 can also bind to cellular targets and directly 
regulate gene transcription in the nucleus [15].

A high endogenous concentration of IGF-1 may increase insulin 
sensitivity in healthy persons but also has insulin-like effects on 
peripheral uptake of glucose and fatty acids [16].

Both insulin and IGF-1 seem to work together to maintain normal 
glucose levels. It was recognized that IGF-I might exert a coordinat-
ing effect on glucose homeostasis, especially in the absence of insu-
lin, e.g. in the fasting state [17]. The mechanism of regulation of 
insulin and IGF-I-mediated glucose metabolism may be multifacto-
rial. However, it has been documented that short-term (2 weeks) 
training was unable to reduce the fasting insulin level while 
a 10–12-month endurance training programme reduced fasting in-
sulin and improved insulin action [18,19].

Physical activity can stimulate growth hormone and IGF-1secre-
tion and therefore IGF-1 may correlate with intensity of physical 
exercise [20,21]. According to literature data, duration and inten-
sity of physical exercise and the type of training have a significant 
impact on IGF-1concentration. Moreover, they have an impact on 
the concentration of IGFBP-1 and IGFBP-3 proteins [22]. It has been 
documented that mainly IGF binding protein 3 and 1 increase 
(IGFBP1 and 3), while IGF-1may not change during exercise.

It should be noted that it is difficult to clearly recognize the phys-
iological role of the GH/IGF-1 axis during exercise. So far, widespread 
individual variation in levels of total IGF-1, “free” IGF-1 (unbound 
to IGFBPs) and the IGFBPs in healthy persons has been con-
firmed [8,23]. There are insufficient published scientific data focused 
on modification of physiological GH/IGF-1/IGFBP molecule concen-
trations in blood in relation to type of training and/or enhance of 
exercise performance. It has been confirmed that the maximal oxygen 
consumption (VO2max; aerobic capacity or the maximum ability to 

TABLE 1. Selected biological features of study athletes and selected training features.

PARAMETER Control Group EN Group ST
Age [years] 29.07±4.26 25.57±4.38 25.15±3.86
Body height [cm] 181.85±5.94 179.70±4.57 179.00±5.61
Body weight [kg] 89.70±16.50 74.23±9.17 83.21±7.50
BMI [kg/m²] 26.98±3.86 22.98±2.64 25.84±1.94
Body fat percentage BFP [%] 22.04±6.11 14.57±5.58 14.74±3.93
Number of training units per week [n] - 5.36±4.21 4.93±4.19
Training experience [months] - 68.33±1.78 76.36±4.38
Training unit duration [min] - 90±3.52 90±5.21
Total number of times participating in competitions 
during last year [n] 

- 43.7±3.78 13.3±5.27
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MATERIALS AND METHODS 
Subjects
Ninety-four athletes – clinically healthy males aged 18-35 
(26.5±4.5 years) – were included in the study and divided into three 
groups: group EN – 33 athletes with predominant endurance training 
character of dynamic effort with minimal 2 years experience in one 
of the following sport disciplines: triathlon, long runs, cycling; group 
ST– 33 athletes with predominant resistance training character of 
dynamic effort with minimal 2 years experience in one of the follow-
ing sport disciplines: powerlifting, Olympic weightlifting, bodybuild-
ing, CrossFit; control–a group of 28 healthy males with average or 
low physical activity in the same range age.

All the athletes enrolled in the study were in the training cycle 
lasting for at least 8 weeks. The training cycle consisted of standard 
training for every individual. The test group subjects had been train-
ing regularly for at least two years in one of the sports disciplines 
(endurance or strength sports). The experiment was performed after 
the eight-week training cycle.

Selected biological features of study athletes and selected training 
features are presented in Table 1.

The study was approved by the Medical University of Lodz Ethics 
Committee (RNN/93/15/KB). All participants gave written in formed 
consent prior to study commencement.

METHODS
Detailed medical examinations were carried out on study participants. 
An interview was included the history on their sports career and 
physical activity.

The biochemical and molecular examination was performed after 
the end of the 8-week training cycle. Participants visited the labora-
tory in a fasted state and at least 12 h after training and before 
anthropometric measurements and the cardiopulmonary exercise 
test (CPET) (Figure 1).

Collection of biological material
Samples for biochemical tests (glucose, insulin, IGF-1 concentrations) 
were taken on an empty stomach in the morning after qualification 
by a doctor.

Selected blood samples from all athletes were collected in morn-
ing hours after 12 hours overnight fasting at one point. Samples were 
collected in Eppendorf tubes and left for about 30-45 minutes at 
37°C (until clot formation). Then the tube was placed in a refrigera-
tor at a temperature of 4°C for several hours (0.5-4 h) until the total 
orga nization of the clot. Next, the tube was centrifuged 
(1200 x g 10 min, 4°C), and serum was separated from the clot 
carefully into a new sterile tube, frozen and stored at -80°C.

Biochemical study
Prepared material was then analysed for selected blood biochemical 
parameters –concentration of glucose, insulin and insulin growth 
factor-1 (IGF-1) – using the standard haematology method (Sysmex 
K-4500) and the Roche COBAS Integra 400 plus analyser. All sam-
ples were analysed in duplicate within the same assay. The intra-
assay variations were 4.1-5.5 mmol/L for glucose, 2.56-24.9 μU/ml 
for insulin and 91-355 ng/ml for IGF-1.

Physical fitness tests
For all well-trained males the cardio-pulmonary exercise test (CPET) 
was conducted and maximal oxygen uptake (VO2max/kg) and VO2/kg 
at anaerobic threshold (VO2/kg at AT). The test was conducted on 
Schiller Cardiovit CS-200 mechanical treadmill kit according to the 
modified Costill-Fox protocol [31,32]. To establish maximal effort 
achieved during the treadmill test, we modified the protocol to be 
more versatile for tested subjects representing different sport disci-
plines [33]. The modified test began with a 1-min warm-up stage 
at 0% grade and minimal speed and was continued for seven 3-minute 
stages during which the speed and incline were increased respectively 

FIG. 1. Study design diagram.
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was measured in a plate reader (ELx800, BioTek) at 450 nm. The 
obtained results were compared to the standard solution of concen-
trations (0.156–10 ng/ml).

Statistical analysis
The Mann–Whitney U test was used to evaluate differences between 
relative expression level (RQ values) of the miRNAs, immunoexpres-
sion level of the protein IGFBP-3, HR, VO2max/kg values, VO2/kg at 
AT, and concentrations of glucose, insulin and IGF1. Spearman’s rank 
correlation coefficient was used to evaluate the relationships between 
resting HR, VO2max/kg values, VO2/kg at AT, BFP, concentration of 
glucose, insulin and IGF1, expression levels of the miRNAs and im-
munoexpression levels of IGFBP-3. Multivariate analysis of MANOVA 
the parametric one-dimensional analysis of ANOVA, Fisher’s test F, 
The Tukey test were used to identifies differences between resting HR, 
VO2max/kg values, VO2/kg at AT, BFP, concentrations of glucose, in-
sulin and IGF1, expression level of the miRNAs and immunoexpression 
level of IGFBP-3. The value of P < 0.05 was considered statistically 
significant. In this study all statistical analyses were performed using 
the Statistica 12.0 program and in the statistical environment R v.3.5.3.

RESULTS 
The average values of selected performance parameters – heart rate 
(HR), oxygen uptake (VO2max/kg), VO2/kg at AT (maximal oxygen 
uptake measured at anaerobic threshold) – and biochemical param-
eters –glucose, insulin and IGF-1 concentration – at the studied time 
point were calculated (Figures 2 and 3).

Statistically significant greater VO2max/kg, VO2/kg at AT and IGF-1 
concentration and lower HR and glucose were observed in the group 
of athletes compared to the control (P < 0.05, Mann–Whitney U test) 
(see Figure 2).

We also observed statistically significantly higher VO2max/kg in 
group EN vs. group ST and lower HR in group EN vs. group ST 
(P < 0.05, Mann–Whitney U test) (see Figure 3).

Relative expression levels of miRNAs in athletes vs. control group
In both studied groups (athletes vs. control), the expression of miR-210 
and miR-375 was overexpressed in relation to the calibrator (RQ >1). 
In the case of miR-124, the RQ value was under the level of detection. 
The reporter’s fluorescence phase was below the detection of cDNA 
amplification detection threshold compared to the control (calibrator).

The expression levels (mean RQ) of both studied miRNAs were 
higher in athletes vs. control, but the differences were not statisti-
cally significant (P > 0.05, Mann–Whitney U test) (see Table 2).

Relative expression levels of the miRNAs (miR-210, miR-375) 
in athlete group according to type of training
In both groups EN and ST miR-210 and miR-375 were overexpressed 
according to the calibrator (RQ > 1). We observed higher expression 
levels (RQ) of miRNAs in group ST than in group EN, but the differences 
were not statistically significant (P > 0.05, Mann–Whitney U test). 

to maximal 24% of incline and 11.6 km/h speed. The protocol 
ended with an additional 3-min stage for those most trained athletes 
who did not achieve maximal effort. For them the incline was estab-
lished at 16% and the speed increased from 16.1 km/h to the mo-
ment they could no longer continue the test and grasped the front 
handrail support. The intensity of the effort yielded was evaluated 
by measuring the heart rate (HR) and metabolic equivalents (METs).

Anthropometric measurements
Anthropometric body weight, body height, BMI and body fat percent-
age (BFP) measurement from four skin folds, according to Durnin-
Womersley, were collected by standard methods on certified scales [34].

Molecular study
RNA extraction and reverse transcription
All molecular and statistical analyses were conducted at the Medical 
University of Lodz. RNA was extracted from serum exosomes using 
the Total Exosome Isolation Reagent (from serum) and Total Exosome 
RNA & Protein Isolation Kit (Applied Biosystems, USA), according 
to the manufacturer’s instructions, with a starting volume of 200 μl.

From the resulting RNA eluate, complementary DNA (cDNA) was 
transcribed from 1000 ng of total RNA, using a high-capacity Taq-
Man MicroRNA Reverse Transcription Kit (Applied Biosystems, USA) 
using 5 μl of template RNA. cDNA products were diluted to 250 μl 
with double-distilled water and loaded on plates for storage at -20°C 
until further analysis.

miRNA analysis
cDNA was transcribed from 10 ng of total RNA using a TaqMan 
MicroRNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, 
CA) in a total volume of 15 μl according to the manufacturer’s pro-
tocol. The relative expression of miRNAs was assessed by qPCR 
reactions using TaqMan probes for the studied miRNA (Applied Bio-
systems, Carlsbad, CA) according to the manufacturer’s protocol. 
The following microRNA probes were used for the study:
miR-124 (CGUGUUCACAGCGGACCUUGAU),
hsa-miR-210 (CUGUGCGUGUGACAGCGGCUGA),
hsa-miR-375 (UUUGUUCGUUCGGCUCGCGUGA).

The PCR mixture contained: 1.0 μl of TaqMan MicroRNA Assay 
(20X) 1.33 μl of product from RT reaction, 10.00 μl of TaqMan 2X 
Universal PCR Master Mix, No AmpErase UNG, and 7.76 μl of 
nuclease-free water (Applied Biosystems, Carlsbad, CA). The plates 
were placed in the Applied Biosystems 7900HT Fast Real-Time PCR 
System (Applied Biosystems, Carlsbad, CA) according to the manu-
facturer’s protocol. The expression levels (RQ values) of the studied 
miRNA were calculated using the delta delta CT method.

Immunoexpression analysis
Immunoexpression analysis was performed using commercial ELISA 
kits for IGPBP-3 (Cloud-clone Corp, USA). The intensity of the final 
colorimetric reaction, in proportion to the amount of protein bound, 
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FIG. 2. HR, VO2max/kg, VO2/kg at AT, glucose, insulin, IGF-1 in athletes compared to controls (Mann–Whitney U test).
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Additionally, higher expression of miR-375 was noticed in ST group, 
compared to EN, and this differences were higher than in the case 
of miR-210, although without statistical significance (P > 0.05, 
Mann–Whitney U test); see Table 3.

Immunoexpression levels of the studied proteinIGFBP-3 in serum 
of athletes vs. controls
In the studied groups (athletes vs. controls), the immunoexpression 
of IGFBP-3 revealed values of 3.67 ng/ml vs. 3.22 ng/ml. The dif-
ference was not statistically significant (P > 0.05, Mann–Whitney U 
test) (see Table 4).

Immunoexpression levels of the studied protein IGFBP-3 in serum 
according to type of training
We observed higher immunoexpression levels of IGFBP-3 in athletes 
of group ST compared to group EN, but without statistical significance 
P > 0.05, Mann–Whitney U test) (see Table 5).

In addition, a correlation analysis between the parameters resting 
HR, VO2 max/kg, VO2/kg at AT, BFP, concentrations of glucose, insu-
lin and IGF1, expression levels of the miRNAs (miR-210, miR-375) 
and immunoexpression levels of IGFBP-3 was performed (Spearman’s 
rank correlation).

We found several positive and negative correlations between the 
several biochemical, physical and molecular parameters (miRNA, 
mean RQ value) of studied miRNAs in all study groups: athletes 
(group EN and group ST) and the control group. Table 6 shows the 
correlation values for those parameters for which statistically sig-
nificant results were obtained (P <0.05).

In the control group, statistically significant increase of IGF-1 
concentration in correlation with reduced IGFBP-3 immunoexpression 

FIG. 3. HR, VO2max/kg in group EN (group A) vs. group ST (group B) (Mann–Whitney U test).

TABLE 3. Expression levels (mean RQ value) of studied miRNAs 
in athletes: group EN vs. group ST.

Mean RQ value P

 Group EN  Group ST

miR-210 1.65 2.03 0.50

miR-375 1.37 2.30 0.28

TABLE 4. Immunoexpression levels of IGFBP-3 (ng/ml) in athletes: 
athletes vs. control.

Mean concentration (ng/ml) P

Athletes  Control

IGFBP-3 3.67 ±1.97 3.22 ±2.39 0.81

TABLE 5. Immunoexpression levels of IGFBP-3 (ng/ml) in athletes: 
group EN vs. group ST.

Mean concentration (ng/ml) P

Group EN Group ST

IGFBP-3 3.31±1.51 3.63±2.03 0.50

TABLE 2. Expression levels (mean RQ value) of studied miRNAs 
in athlete and control groups.

Mean RQ value 
in athletes

Mean RQ value 
in controls

P

miR-210 1.84 1.01 0.38

miR-375 1.83 1.51 0.33



Biology of Sport, Vol. 37 No3, 2020   223

Physical training effects GH/IGF-1 axis but not on regulating miRNAs

and BFP was confirmed. However, with the increase of the BFP we 
observed a statistically significant increase of the HR value.Addition-
ally, the strongest negative correlation in the control group between 
the expression level of miRNA-210 and miRNA-375 was shown,  
similar  results in the ST group were observed.

In the EN group a significant increase of IGFBP-3 immunoexpres-
sion with an increase of BFP and HR values was observed. In contrast, 
the value of VO2max/kg significantly decreased in correlation with 
IGFBP-3, while in the ST group VO2max/kg positively correlated with 
IGFBP-3. Among EN group athletes, the increase in the value of 
VO2max/kg was strongly associated with a decrease of BFP, as in the 
ST group, but the strength of the relationship in the ST group was 
moderate (see Table 6).

Multivariate analysis of variance between values of parameters: 
resting HR, VO2max/kg, VO2/kg at AT, BFP, concentrations of 
glucose, insulin and IGF-1, expression levels of miRNAs and 
immunoexpression levels of IGFBP-3
Multivariate analysis of variance (MANOVA) revealed significant dif-
ferences in the values of the following parameters: resting HR, VO-

2max/kg, VO2/kg at AT, BFP, concentrations of glucose, insulin,IGF-1, 
expression levels of miRNAs (miR-210, miR-375) and immunoex-
pression levels of IGFBP-3 between the three groups: control group, 
group EN, group ST. The Wilks test statistic was 0.6041 at P < 0.001. 
Box plots are presented in Figure 4.

Analysis of variance (ANOVA) and Fisher’s F test were carried out 
and revealed significant differences in group variables for resting HR 
(P = 0.0009832), VO2max/kg  (P <0.001), VO2/kg at AT 
(P =0.002285), BFP (P < 0.001), and immunoexpression level 
(mean value) of IGF-1 (P = 0.006774). For the variables miR-210 

(RQ) (P = 0.2174), miR-375 (RQ) (P = 0.4474), IGFBP-3 (P = 
0.7082), concentration of glucose (P=0.3569) and insulin 
(P=0.5342), there were no statistically significant differences.

Tukey’s test confirmed significantly higher levels of resting HR in 
group ST compared to the control group (P = 0.0011782). A sig-
nificantly higher level of resting HR in group ST compared to group 
EN was observed (P = 0.0110396).

Additionally, Tukey’s test confirmed significantly higher levels of 
VO2max/kg in group EN (P = 0.0000018) and for group ST 
(P=0.0101376) compared to the control group. A significantly 
higher VO2max level in group EN vs. group ST was found 
(P=0.0387144).

Tukey’s test confirmed a significantly higher level of BFP for the 
control group in comparison to group ST (P=0.0000018) and to 
group EN (P=0.0000009) and a lower IGF-1 level in the control 
group compared to group ST (P=0.0077).

DISCUSSION 
It has been suggested that serum IGF-1concentrationand IGFPB-3 
immunoexpression are sensitive markers of training status [35]. 
Therefore it was proposed that they may be used as guides for train-
ing monitoring and modulating its intensity [36]. The results from 
this study demonstrate that IGF-1concentration may be used as 
a sensitive marker of acute and chronic effects of training. It was 
documented that the catabolic phase, followed by anabolic, was 
characterized by a reduction of IGF-1 concentrations in serum during 
the intensive stage of activity. The anabolic phase was marked by 
a significant increase in serum IGF-1 concentrations in the post-
training stage, but short intensive aerobic activity (above the an-
aerobic threshold) may significantly increases the IGF-1 level. Our 

TABLE 6. Correlations between biochemical, physical and molecular parameters in all study groups; Spearman’s rank correlation.

Type of training Parameter Parameter Rho value P value

control
IGF-1 IGFBP-3 -0.44 0.01

IGF-1 BFP -0.33 0.01

HR BFP 0.41 0.01

miRNA-210 miRNA-375 -0.64 0.0001 

group EN IGFBP-3 BFP 0.33 0.01

IGFBP-3 HR 0.487 0.004

IGFBP-3 VO2max/kg -0.41 0.018

VO2max/kg BFP -0.80 0.0001

group ST IGFBP-3 VO2max/kg 0.49 0.0037

IGFBP-3 BFP -0.31 0.01

VO2max/kg BFP -0.46 0.001

miRNA-210 miRNA-375 -0.50 0.001
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FIG. 4. Box plots presenting differences in mean values of tested parameters (miR-210, miR-375, IGF-1, IGFBP-3, glucose, insulin, 
VO2max/kg, VO2/kg at AT, HR, BFP) in individual groups: control vs. EN (group A) vs. group ST (group B).
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results showing an increase in IGF-1 and especially in athletes after 
resistance exercise suggest that isometric/eccentric/concentric exer-
cises cause an increase in IGF-1 not only locally in muscle but also 
in serum. Moreover, our data supported the hypothesis that the abil-
ity to increase circulating IGF-1 concentration correlates with athletes’ 
accurate physical condition [37]. Interestingly, IGFBP-3 was the only 
sensitive marker of training effects, with a reduction in serum con-
centrations during the post-training intensive stage and an increase 
during the tapering stage of training. Moreover, increases of IGFBP-3 
concentration in serum may correlate with increases in peak and 
average force as a chronic effect of exercising [36]. Our data confirmed 
that the increased immunoexpression of IGFBP-3 may suggest the 
chronic effect of exercises. What is more, the increased immunoex-
pression of IGFBP-3 suggests the best athletic performances and 
deficiency of high fatigue of athletes in our study group. In a different 
study on rugby players a strong negative correlation between IGF-1 
and IGFBP-3 was observed. In particular, significant reduction in 
IGFBP-3 concentration in serum after the match was observed in 
more fatigued, overtrained sportsmen [35].

In our study we evaluated the heart rate (HR) as one of the main 
parameters of physical fitness and we observed statistically signifi-
cantly lower HR in the group of athletes compared to the control 
group and statistically significantly higher HR in the group of resistance 
training athletes. These data are consistent with the statement that 
endurance-trained athletes have a decreased submaximal exercise 
HR due to reduced sympathetic activity for a given submaximal work 
rate [38]. Also in our study we evaluated aerobic endurance (VO2max; 
maximal oxygen uptake), which is important in aerobic cardiovascu-
lar endurance monitoring. We observed a statistically significantly 
higher VO2max/kg level in athletes compared to the control group 
but we also observed significantly higher aerobic endurance in the 
group of endurance training athletes. Interestingly, the published 
results in this area seem to be controversial [39]. Most of the previ-
ous studies confirmed the positive effects of training on the VO2max 
kinetics during interval or endurance exercises [40]. Indeed, mainly 
the endurance training of running athletes was associated with a sig-
nificant increase of aerobic endurance or increase in running perfor-
mance as aresult of the simultaneous strength and endurance im-
provement [41]. In our study we observed an increase of VO2max in 
training athletes and a higher level of VO2max in the endurance 
training group. Moreover, our resistance training athletes improved 
their aerobic endurance. However, in contrast, Kraemer et al. (1995) 
reported that aerobic athletes who followed an intense resistance 
programme (for 3 months) did not improve VO2max [42]. All con-
sidered, it is difficult to conclusively determine the effectiveness of 
different types of training on VO2max evaluation. Moreover, in our 
opinion, resistance training is effective in increasing VO2max inde-
pendently of the protocol, but the training programme should last 
many weeks (about 20) at high intensively (60-90%). Our athletes 
trained for 8 weeks, which was too short to significantly improve 
their aerobic fitness.

So far it is well known that regular physical activity influences 
tissue adaptation to exercises, mainly skeletal, muscle, circulatory 
and respiratory systems, affecting health. However, the mechanisms 
of molecular adaptation to exercise are insufficiently understood. 
Recently, the role of miRNAs as potential regulators of training re-
sponse in the human body has been widely discussed [43-46]. Mi-
croRNAs (miRNAs) regulate post-transcriptionally gene expression 
and are involved in the regulation of a wide range of molecular targets 
(i.e. genes, other miRNAs, transcription factors or proteins), and 
biological processes: mitochondrial metabolism, cell lipid and glucose 
metabolism and energy homeostasis [47,48]. Some types of circulat-
ing miRNAs, and myomiRs, identified in cardiac and skeletal muscle, 
have been under consideration as molecular biomarkers of physical 
adaptation to activity related to the type of training [43,45,49]. 
Moreover, c-mRNAs are well documented as regulators of physiolog-
ical processes under aerobic and resistance exercises [50-52].

In our study we chose miRNAs (miR-124-3p, miRNA-210 and 
miRNA-375) which are related to numerous biological and cellular 
processes involved in adaptation to physical activation. Firstly we 
evaluated the miR-124-3p expression level, but we did not detect 
its expression at any time point during our experiment. Our observa-
tions are consistent with the study of another author who also found 
that miR-124-3p remained undetectable [53]. Interestingly, this 
undetectable miRNA is associated with bone formation and turnover 
and may regulate bone turnover markers (e.g. osteocalcin) and DKK1 
(Dickkopf-related protein) [54]. Remarkably, bone metabolic markers 
may be minimally disturbed during brief exercises, which can be 
associated with low/undetected levels of their regulators. Another 
miRNA researched by us –MicroR-210 –is recognized as hypoxia-
induced [55]. It influenced mitochondrial metabolism, cell apoptosis 
and erythropoiesis regulation [56,57]. In an animal model it was 
demonstrated that expression of miR-210 in rat cardiac tissue (in 
myocytes) increased ina group of animals subjected to 8 weeks train-
ing of voluntary exercise. Profiles of circulating miRNAs vary under 
different exercise conditions and types of training [58]. In our research 
we observed non-significantly increased expression of miRNA-210 
in the group of athletes and higher miR-210 expression level in re-
sistance training athletes. In contrast, Li et al. documented decreased 
circulating miR-210 in response to acute exercise in basketball ath-
letes [55]. Our data were partially confirmed by others who observed 
a non-significant exercise-dependent increase of miR-210 expression 
level immediately following exhaustive exercises and no change in 
the post-training resting period [50]. On the other hand, strong miR-
210 upregulation was observed in rats undergoing physical exer-
cises [58]. The proposed mechanism of this observation is induction 
of miR-210 via HIF-1during exercise, mainly in cardiac muscle but 
also in circulation. Moreover, circulating miR-210 levels were most 
strongly increased in healthy women with low VO2max [30,59]. 
Supposedly growing release of miR-210 from the endothelium in 
people with low VO2max may be associated with subclinical or per-
sistent chronic cardiovascular diseases or pathological processes 
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(atherosclerosis, hypoxia, myocardial infection, diabetic ischaemic 
heart failure or inflammation) [60-62]. In our study, we observed 
that resistance exercises may increase more effectively the circulat-
ing miRNA-210 expression level. Resistance exercise finally may 
initiate hypoxia-induced changes (HIF-1/VEGF pathway) in skeletal 
and cardiac muscle metabolism and in circulation (vessels’ endothe-
lium), influencing maximal oxygen uptake (VO2max). Surprisingly, in 
our study we did not confirm the relationship between miR-210 
expression level and VO2max in either study group.

Additionally in our studies, we focussed on miRNA-375. This 
miRNA takes part in regulation of insulin secretion, and is proposed 
as a significant determinant of glucose homeostasis. It was demon-
strated that miR-375 is implicated in pancreatic β-cell development 
and its deletion influences loss of pancreatic β-cell mass [63,64]. In 
human pancreatic islets insulin secretion positively correlated with 
miR-375 expression level [65]. Based on mentioned data and the 
conducted research, it is confirmed that all types of physical exer-
cises, including resistance exercises, decrease blood insulin levels. 
Our data confirmed a published study on insulin concentrations in 
active persons [66]. We observed a decrease in insulin concentration 
in blood of our athletes compared to controls, but higher insulin con-
centration was observed in resistance training athletes. Moreover, our 
observation of a higher expression level of miR-375 with a simultane-
ous decrease in insulin levels in athletes in both groups may be inter-
esting. We also observed a higher expression level of miR-375 in 
serum of athletes from the group training with resistance-type exer-
cises. Unfortunately, we cannot discuss this result because, to our 

knowledge, there are no similar published data on this subject. How-
ever, we confirmed a possible association of miRNA-375 with the 
regulation of insulin secretion under physical exercises; therefore we 
also confirmed the role of miRNA-375in glucose homeostasis. Our 
data may partially correlate with research of Keller et al., who dem-
onstrated that antagonized action ofmiR-375 could potentially enhance 
in diabetes patients the effects of exendin-4, (homolog of glucagon-like 
peptide-1), which revealed anti-diabetic actions [67,68].

CONCLUSIONS 
Evaluation of the protein concentration of IGFBP-3 and the con-
centration of IGF-1 as well as the expression levels of miR210 and 
miR-375 seems to reflect exercise adaption at the cellular level. 
Increased levels of IGF-1 and IGFBP-3 in athletes who did not 
present the effect of overtraining indicate the protective effect of 
growth factors and proteins binding these factors on the athlete’s 
body. The obtained results confirm the importance of the somato-
tropic axis in the regulation of the metabolic adaptation process to 
physical effort.
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