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Abstract

The development of abnormal protein aggregates in the form of extracellular plaques and intracellular inclusions is
a characteristic feature of many neurodegenerative diseases such as Alzheimer’s disease (AD), Creutzfeldt-Jakob
disease (CJD) and the fronto-temporal dementias (FTD). An important aspect of a pathological protein aggregate is
its spatial topography in the tissue. Lesions may not be randomly distributed within a histological section but exhibit
spatial pattern, a departure from randomness either towards regularity or clustering. Information on the spatial
pattern of a lesion may be useful in elucidating its pathogenesis and in studying the relationships between different
lesions. This article reviews the methods that have been used to study the spatial topography of lesions. These
include simple tests of whether the distribution of a lesion departs significantly from random using randomized
points or sample fields, and more complex methods that employ grids or transects of contiguous fields and which
can detect the intensity of aggregation and the sizes, distribution and spacing of the clusters. The usefulness of
these methods in elucidating the pathogenesis of protein aggregates in neurodegenerative disease is discussed.
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processes. In neurodegenerative disorders such as
Parkinson’s disease (PD), Pick’s disease (PiD) and
dementia with Lewy bodies (DLB), abnormal protein

Introduction

There has been a considerable increase in the

application of methods designed to quantify features in
histological sections of brain tissue [1,6]. Image analysis
systems have enabled images to be captured and
enhanced on a computer screen so that particular
histological features can be quantified rapidly and more
objectively [40]. In tissue sections, histological features
often appear as discrete objects or profiles such as cell
perikarya, cell nuclei, blood vessels, or lesions that are
formed in the brain as a result of pathological

aggregates in the form of inclusion bodies may be
observed within the perikarya of vulnerable groups of
neurons, while in Alzheimer’s disease (AD) and
Creutzfeldt-Jakob disease (CJD), extracellular deposits
of abnormal protein aggregates occur in the form of
discrete senile plaques [16]. In many neurodegenerative
diseases, understanding the formation of these
pathological lesions has become critical in elucidating
the pathogenesis of the disease [17].
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An important property of a pathological lesion is
its spatial arrangement pattern or topography in the
tissue [17]. A lesion may not be randomly scattered
throughout a histological section but exhibit a spa-
tial pattern, i.e, a departure from randomness
towards regularity or clustering. For example, in AD
there is evidence that both the B-amyloid (AB)
protein deposits, an important constituent of senile
plague (SP) [25], and the intracellular neurofibrillary
tangles (NFT) are clustered in the cerebral cortex
[1,36]. In many regions, these clusters are regularly
distributed along the cortex parallel to the pia mater.
Information on spatial pattern may be valuable in
understanding both the relationships between
different lesions, e.g., the relationship of AB protein
deposits to neurofibrillary tangles (NFT) [8,13], and
between lesions and the anatomical features of the
brain, e.g., the relationship between Af deposits and
neuronal perikarya [5] or blood vessel profiles [3,10].

This review describes the methods that have
been used to study the spatial topography of
abnormal protein aggregates in neurodegenerative
disease. These methods range from simple methods
that employ randomized points or sample fields to
more complex methods based on grids or transects
of contiguous fields. Each method has strengths and
limitations and an appreciation of these qualities is
essential for their successful application. Methods
based on point patterns that have not been
extensively used to date to study protein aggregates
have been reviewed previously [9].

Types of spatial pattern

A pathological lesion such as a protein deposit or
cellular inclusion may be distributed randomly,
regularly, or it may be aggregated into clusters.
Spatial pattern is defined as a statistically significant
departure from a random distribution. The most
commonly observed departure from randomness
exhibited by brain lesions is towards aggregation or
clustering [17]. If a feature is clustered, then the
distribution of the clusters themselves may be
regular or random. Clustering may occur at two or
more scales in a section, e.g., small and larger-scale
clusters may be present and smaller clusters may be
aggregated into larger clusters. Two important
features of a clustered pattern are its “intensity” and
“grain” [37]. Intensity is the ratio of the density of an
object at the centre of the clusters to that of the
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adjacent spaces or to regions of lower density.
A feature may be distributed in dense clusters
separated by distinct gaps (high intensity pattern) or
there may be a more gradual transition from regions
of high to low density (lower intensity pattern). By
contrast, the “grain” of a pattern relates to the size and
spacing of the clusters. Large clusters, which are widely
spaced in the tissue, form a coarse-grained pattern,
while small clusters, more closely spaced, form a fine-
-grained pattern. Information on some or all of these
aspects of spatial pattern may be relevant in individual
studies. However, each method only provides
information on certain aspects of spatial pattern.
Successful application of a particular method requires
first, a clear hypothesis and second, an appreciation of
the advantages and limitations of each method.

“Plotless” methods

Many of the methods of studying spatial pattern
rely on counting the number of lesions in defined
sample fields or plots. Measuring a spatial pattern,
however, is dependent on the shape and size of the
sample fields used [1]. Hence, a good alternative is to
use a “plotless” method, i.e.,, a sampling method
based on the use of randomized points.

Holgate’s method

In Holgate’s method [29], a number of randomly
selected points (“n” at least 50) are superimposed
over the area of the section to be sampled (Fig. 1A).
From each point, the distance to the nearest lesion
of interest (d) is measured and the distance to the
second nearest lesion (d;). The index of aggregation
(A} (Table 1) is zero for a random distribution, greater
than zero for a contagious distribution, and less than
zero for a uniform distribution.

Hopkin’s method

In Hopkin’s method (Fig. 1B) [30], a number of
points are superimposed at random over the section
and the distance of each point to the nearest lesion
measured (d). Second, a total of “n” lesions are
selected at random and the distance from each to the
nearest profile measured (d,). The index of aggregation
A, (Table 1) is zero for a random distribution, greater
than zero for a contagious distribution, and less than
zero for a uniform distribution. A, is more difficult to
determine than A; since the selection of random
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Table I. Summary of formulae and significance tests for studying spatial pattern in histological sections

Method Statistic Significance test Data
Holgate’s index (A)) A=% (d?/d2)/n-0.5 t=|A/(\In/12) Distance
Hopkin’s index (A,) A,=%d?/2d2-1 t=2[(A,+1)/(A,+2)-0.5N(2n+1) Distance
Poisson - x2=% (0-E)2/E Frequency
Poisson V/M t=|V/M-1.01/~2(n-1) Density
x?*={(n-1)(V)}/M
Index of aggregation (k) pk(1-g)~*; p=k/k+u and q=1-p - Density
Morisita’s index (I4) lg=n (ZX2-N)/N(N-1) 12=(NZX2/N)-N Density
Spatial pattern analysis (grid, transect) ~ V/M t=V/M-1.0//N2(n-1) Density
x?={(n-1)(V)}/M
Spatial pattern analysis (grid, transect) ~ V - Any
Regression B (b) t=b/s, Any
Fourier analysis f(x)=f(An, Bn) ANOVA Any

ANOVA — analysis of variance; V — variance; X — individual observations; M — mean of densities; n — number of observations or plots; N — total number of
individuals counted on all “n” plots; d — distance measure; t — student’s “t”; p, g — probability of an individual event; B — regression coefficient; b — sample
regression coefficient; s, — standard error of b; O — observed frequency; E — expected frequency.

lesions can be a tedious procedure. In addition, it is not
valid to consider the lesion nearest a random point to
be a randomly selected lesion. One method would be
to assign a number to each lesion in the area of
interest and select a random sample using a random
numbers table.

Methods based on randomised
sample fields

A number of methods of determining spatial
pattern are based on the use of sample fields in
which various histological features are counted [1].
Individual fields may be located at random within
a region of interest or a more systematic sampling
regime may be employed involving the use of grids
or transects.

The Poisson distribution

Methods based on the Poisson distribution are
the most commonly used to test the degree of
departure from randomness. Any type of sampling
employing sample fields can be used to fit the
Poisson distribution to data but the most usual
method employs a random distribution of individual
fields. If spatial pattern of the lesion is random then
the probability (P) that the fields contain 0, 1, 2, 3, .., n,

Folia Neuropathologica 2006; 44/4

individuals is given by the Poisson distribution. The
Poisson distribution can be used to calculate the
expected number of fields containing 0, 1, 2, 3, ..., n,
individuals and deviations of the observed from the
expected frequencies tested using either a Kolmoro-
gorov-Smirnov or chi-square (y?) test.

An example of the use of this method to
determine whether NFT were randomly distributed in
the frontal cortex of a case of AD is shown in Fig. 2.
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Fig. 1. Different methods of point sampling: A)
Holgate’s method based on the distances of
randomly selected points (n) to the nearest and
second nearest profile, B) Hopkin’s method
based on the distance of both random points to
the nearest profile and randomly selected
profile to nearest neighbour

231



Richard A Armstrong

55
50
45
40
35
30
25
20 ;
15 5 L
10 e -:

no. of observations

1 0 1 2 3 4 5
number of NFT per sample field

Fig. 2. Fitting the Poisson distribution to the
frequency distribution of the numbers of
neurofibrillary tangles (NFT) in a case of
Alzheimer’s disease (AD) (continuous line =
observed frequencies, dashed line = expected
frequencies, chi-square (y2)=4.46, P=0.216)

Tissue sections were stained with the Gallyas method
to reveal the NFT and 128, 200 x 1000 um sample
fields positioned at random within the section. The
number of NFT was counted in each sample field and
a frequency distribution constructed of the number of
fields containing 0, 1, 2, 3, ..., n, NFT (Fig. 1). A Poisson
distribution was fitted to this discrete distribution
which in this case fitted the data adequately (y*=4.46,
P=0.216). Hence, there was no evidence in the frontal
cortex that the NFT deviated significantly from
a random distribution. However, Pearson et al. [36] and
Myers et al. [35] used this method to determine the
spatial pattern of SP and NFT respectively in patients
with AD. Significant degrees of clustering of the SP and
NFT were observed, leading to the conclusion that the
lesions developed in relation to the cortico-cortical
projections of the brain, i.e, those anatomical
pathways that connect cortical gyri [23,28], and that
the pathology may spread gradually from a point of
origin in the temporal lobe to affect most other areas
of the brain via these projections [36].

The negative binomial distribution

Methods of studying spatial pattern based on
the Poisson distribution test the hypothesis that an
observed pattern does not differ significantly from
an expected random distribution. Such a test,
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however, does not give a good description of the
intensity of aggregation.

The negative binomial distribution can be fitted
to a variety of clustered patterns and may give
a more accurate estimate of the intensity of
aggregation. The negative binomial is a two-
-parameter distribution defined by the mean density
of the histological feature (u) and the binomial
exponent “k” (Table I). The value of “k” is generally
between 0.5 and 3.0 and decreases as the degree of
aggregation increases, and hence the reciprocal of
“k” can be used as an index of the degree of
aggregation. Care must be taken in comparing
different populations, however, since they may differ
in both mean density and in aggregation, the
relationship between “k” and density being more
complex [41,42]. The procedure for fitting the
negative binomial to data is given by [21].
Essentially, any sample information about the
numbers of a histological feature in space can be
analysed as long as the mean number of individuals
per sample is low and plot size is adjusted to reflect
this limitation. Data are grouped as a frequency
distribution to show the number of samples (f)
containing various numbers of individuals (X). The
mean number of individuals per plot is then
calculated and “k” estimated by an iterative
procedure. The expected frequencies of samples
containing various numbers of individuals can then
be calculated and compared with the observed
distribution to test whether the negative binomial is
an adequate fit to the data.

Morisita’s index of dispersion

Morisita’s index of dispersion [34] is an alternative
to the use of the Poisson and negative binomial
distributions and has the additional advantage that
the index of clustering is unaltered if objects have
disappeared at random from the original clusters. This
may be especially relevant in the analysis of cell
populations and of pathological lesions since losses of
these entities may occur during aging and disease
pathogenesis in the brain [31,38]. Morisita’s index of
clustering (I5) (Table 1) is unity for a random
distribution, zero for a perfectly uniform distribution,
and equal to “n” when individuals are maximally
aggregated. The significance of I can be tested by
a chi-square test (Table I).
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Other methods based on the Poisson distribution
and the V/M ratio include David & Moore’s test [22]
that can be used as an index of clustering and to
compare whether similar degrees of clustering were
present in different areas, and Lloyd’s method [33]
based on the calculation of a “mean crowding
index” or “index of patchiness”.

Methods based on grids or transects

A disadvantage of the Poisson method of
determining spatial pattern is that the results are
markedly affected by field size. To overcome this
problem, if contiguous samples or grid-sampling is
used, quantitative measures in adjacent fields can
be added together successively to provide the data
for increasing field sizes up to a size limited by the
length or area of the section sampled [1,4,26,27,32].
The starting position of the transect relative to the
tissue section or the location of the grid should be
determined randomly. There are two main methods
of analyzing data from this type of sampling regime,
viz., the variance/mean (V/M) method and spatial
pattern analysis by regression.

The V/M method

This method is an extension of the Poisson
distribution to grids and transects. If a transect is
employed, then the numbers of profiles of the
histological feature of interest in adjacent plots can be
added together successively to obtain counts for larger
field sizes, ie., two unit blocks made up of adding
together data from the original plots (field size 2), four
unit blocks (field size 4), eight unit blocks (field size 8),
etc., up to a size limited by the length of the sample
transect. In a Poisson distribution, the variance (V) is
equal to the mean (M) and hence the V/M ratio is
unity. The V/M ratio (Table 1), also known as the
“coefficient of dispersion” or “the relative variance”,
can be used as an index of spatial pattern, uniform
distributions having a V/M ratio less than unity and
contagious distributions greater than unity. The
significance of departure of the V/M ratio from unity
can be tested by a “t”-test or by a chi-square test [19].
In fitting a Poisson distribution, the mean number of
individuals per plot should not exceed 10 and should
preferably be less than 5, field size being adjusted to
achieve this outcome. The V/M ratio is calculated at
each field size and a graph plotted of the relationship
between V/M and field size. If the distribution of
a lesion is random, then V/M will not rise significantly
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above or below unity. If V/M increases with field size
reaching a plateau or asymptotic value, this indicates
that the clusters are distributed randomly. The field
size at which V/M reaches its asymptotic value
provides an estimate of cluster size. If V/M increases
to a significant peak, then a regular distribution of
clusters is present, the location of the peak indicating
the cluster size. Whether a significant peak is present
can be tested either by a t-test or a chi-square test
(Table 1) as described previously [19]. The height of a
V/M peak is a measure of the intensity of clustering,
i.e., the ratio of density in the clusters to that in the
adjacent spaces. Finally, if V/M increases with field size
neither reaching a plateau nor a peak, then this is an
indication of the presence of clustering on a large
scale, i.e., the total length of the transect may only
include part of a single large cluster.

This method can be extended to non-density data
such as areas or volumes but in this case it would not
be valid to use the Poisson distribution. Instead, the
data can be analysed by analysis of variance (ANOVA)
[32] in which the total sums of squares is partitioned
between the various field sizes, the within field sizes
mean squares being considered to be a comparable
measure to the V/M ratio.

An example of the use of the V/M method is
shown in Fig. 3 and shows the spatial pattern of the
diffuse and florid prion protein (PrP) deposits in the
frontal cortex in a case of variant CJD (vCJD). A transect
of contiguous 50 x 200 um sample fields, commencing
at a random location, was set up parallel to the pia
mater in the frontal cortex, the short dimension of the
sample field aligned with the surface of the cortex. The
number of the diffuse and florid PrP deposits per
sample field was counted using an exclusion rule that
stated that more than 50% of the area of the deposit
should fall into a field before it can be included. A plot
of V/M against field size for the resulting data is
shown in Fig. 3. The V/M ratio of the florid deposits
reached a peak at a field size of 400 pm, suggesting
the presence of clusters of florid plagues, 400 pm in
diameter, distributed with a regular periodicity parallel
to the pia mater. By contrast, the V/M ratio of the
diffuse deposits was significantly lower than unity at
each field size, suggesting a regular or uniform
distribution of deposits.

This type of analysis has been used extensively
to study the spatial patterns of abnormal protein
aggregates in diseased brain [17]. However, the
method does have limitations. First, although
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Fig. 3. Spatial pattern analysis using the
variance/mean (V/M) method of the florid and
diffuse prion protein deposits (PrP) in a case of
variant Creutzfeldt-Jakob disease. (* — indicates
significant V/M peak)

confidence intervals [27] and tests of significance
[19] can be calculated for the V/M ratio, if non-
-density data are obtained then variance ratio (F)
tests cannot be performed because the calculated
mean squares are not independent of each other
[32]. Hence, there is no objective test of the
statistical significance of a variance peak with non-
-density data. The occurrence of the same peak in
replicate samples taken from the same brain region
could be used to assess the significance of a peak.
However, this is unlikely to be satisfactory because
spatial patterns of the same feature may vary
significantly in closely parallel sections [12]. Second,
most forms of this analysis add together in pairs
adjacent density values successively to produce data
for the larger field sizes. As a result, no information
is available on the scale of spatial pattern between
field sizes and this may create a significant error in
estimating the size of larger clusters since field size
increases geometrically. Third, the analysis may
select the clusters, the intervening spaces, or one-
-half of the cluster plus space size as the significant
unit of pattern [24,37]. Careful interpretation of the
original data may be necessary to confirm that
a V/M peak actually represents the cluster size. If the
pattern present has a low intensity this distinction
may be difficult to make. Fourth, no information is
provided as to the spacing or “periodicity” of the
clusters of a histological feature along the transect
or within the grid.
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Spatial pattern analysis by regression

A disadvantage of the V/M method is that it is
based on the Poisson distribution and can only be
applied to data in the form of counts or frequencies.
Non-density data such as area of an object or “load”
cannot be analysed using this method [L4]. An
alternative method of analysis, based on a linear
regression model, has been described by Yarranton
[43] and can be used on any quantitative measure
obtained from the sample fields. As in the V/M
method, a measure of a histological feature is made
in a series of contiguous sample fields. This type of
analysis is based on the observation that if lesions
are distributed in discrete clusters and regularly
distributed along the transect, the amount of a lesion
in adjacent sample fields (comprising the X and Y
variables of the analysis) will be high in both fields if
they are sampling a cluster and low if they sample an
intervening space. If the spacing between the sample
fields is increased (e.g., if X and Y are the first and
third fields, second and fourth fields, etc.), the
probability increases that there will be pairs of values
such that one member of the pair will fall within
a cluster and the other within an adjacent space.
Hence, the degree of positive correlation between
the sample pairs should decrease as the spacing
increases. In theory, the correlation between sample
pairs should become significantly negative when the
spacing between the X and Y variables corresponds
to the average size of the clusters. Moreover, when
the spacing between the X and Y variables
corresponds to the distance between regularly
distributed clusters, a significant positive correlation
should be found. This occurs because the pairs of
values are now so widely spaced that they sample
adjacent clusters or spaces. Hence, linear regression
coefficients (B, sample coefficient “b”) (Table 1) are
calculated between pairs of adjacent values and then
with increasing degrees of separation (i.e., separated
by 1,2, 3, 4,5, .., n units). The regression coefficient
is plotted as a function of the degree of separation of
the pairs of samples. A “t” test of the regression
coefficient [39] can be used to test the significance of
the positive and negative peaks.

An example of this analysis using simulated data is
shown in Fig. 4. The simulated data contain three
regularly spaced clusters of a feature of size 5 units
separated by spaces of 11 units. Regression
coefficients were calculated for adjacent pairs of
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values and then with increasing degrees of separation
up to a separation of 12 units. A plot of B against
degree of separation reveals a negative peak at 5-6
units corresponding to cluster size, and a positive peak
at 11 units corresponding to the spacing between the
centres of adjacent clusters. This method was used by
Armstrong and Wood [11] to study the spatial pattern
of clusters of AB deposits in the cerebral cortex in
patients with AD. Regularly spaced clustering of AB
deposits parallel to the pia mater was detected and
the analysis also estimated the spacing between the
clusters to be in the range 2,200-11,800 pm. The
regression method also was able to detect the
presence of clusters of AP deposits at scales not
detected by the V/M method [11].

Methods based on Fourier analysis

Bruce et al. [20] described a method of determining
the spatial pattern of histological features across the
different laminae of the cerebral cortex of the brain.
The data comprised measurements of the amount or
“load” of amyloid at different levels in the cortex.
A Fourier series was calculated as a series of harmonic
components (Table ) and ANOVA was used to
determine the presence of significant harmonics. If no
significant harmonics are found, this indicates that the
distribution was random. The number of significant
harmonics may indicate the number of clusters
present and the curve of best fit can be used to
describe the “grain” of the pattern. Significant
harmonics were detected in the parahippocampal
gyrus (PHG), suggesting the presence of clustering of
AP deposits in relation to particular laminae [20].

Discussion

Successful studies of spatial pattern in brain
tissue require that the objectives have been
explicitly defined and translated into precise
questions or hypotheses to be tested. The study
population should then be carefully defined, e.g.,
a histological feature in a particular lobe or lamina
of the cerebral cortex and a random sampling
regime employed so that quantitative estimates of
the feature of interest can be obtained.

Sampling regime

The first decision to be made in a study of spatial
pattern is the type of sampling regime to be employed
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Fig. 4. Pattern analysis by regression: an
example using a simulated data set comprising
37 contiguous fields (listed at top of graph) and
which includes three clusters

[6]. Methods based on the distances of points to the
nearest lesion may provide only limited information on
spatial pattern. If a plot-based method is chosen, the
size, shape, the number of the sample fields, and their
spatial arrangement should then be considered. In
general, rectangular fields may give the best estimates
of a quantitative measure. Many of the methods of
determining spatial pattern are dependent on field
size and this size should be determined by
consideration of the density and the scale of pattern
to be detected. The number of fields measured used
may be estimated by examining the precision required
and the degree of variability between plots. The
sampling strategy may also involve fields arranged at
random, in a grid, or in a contiguous transect. In the
cerebral cortex, transect sampling parallel to the pia
mater or vertically across the laminae is often a useful
method of studying features in the cerebral cortex
because there is often significant variation in
pathological features in these specific directions [6].
Where sampling is involved, transect starting position
or location of the grid should be randomly determined.

Quantitative measurements

The next decision that needs to be made is the
quantitative measure to be obtained from each field.
Profile density provides a reliable measure of
abundance of a histological feature in histological
sections. In some circumstances, however, individual
objects cannot be identified, e.g., certain types of
diffusely distributed protein deposits, and estimates of
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the area or load may be a more appropriate measure.
Finally, the statistical method of determining spatial
pattern needs to be selected. If the objective of the
study is simply to test whether a population in
a particular area departs from randomness, then
a variety of methods based on points or lines are
available. To test more complex hypotheses, however,
methods that measure cluster dimension, the
arrangement of clusters or the correlation between
two different histological entities [7] may be required.

Application to neurodegenerative disease

A major application of spatial pattern analysis has
been to the study of the spatial distribution of cellular
inclusions and protein deposits in neurodegenerative
disease [17]. In diseases such as AD and CJD, randomly
distributed lesions are rare and, within a particular
disorder, usually comprise less than 6% of tissue
sections analysed. A randomly distributed pattern is
most likely to be found when the density of a lesion is
low and individuals are widely scattered [17]. Regularly
distributed lesions are also uncommon in brain tissue
and occur either when the density of objects is low
and lesions are widely spaced or when the density of
a lesion is high. Pathological lesions are rarely regularly
distributed but neuronal cell bodies within normal
control brain are often distributed evenly parallel to
the pia mater. In the neurodegenerative diseases
studied to date, including AD, CJD and the various
forms of FTD, the most common spatial pattern
observed is clustering [17]. Clusters that are randomly
distributed are rare, although the degree of
vacuolation (“spongiform change”) in patients with
sporadic CJD may show this pattern in some cortical
areas [16]. In the majority of tissues examined,
clustering takes two forms. First, the most common
type of distribution is of clusters that are regularly
distributed parallel to the tissue boundary. In some
circumstances, smaller aggregations of lesions are
clustered together to form larger aggregations and
clustering may therefore occur at two or more scales
in the tissue. Hence, such methods as the V/M
method applied to grids or transects will be essential
to reveal these patterns in brain tissue. Second,
lesions occur in large clusters, usually greater than
6400 pm in diameter, and a single cluster may occupy
a considerable portion of the sampled area. Within
such large clusters, individual lesions may be randomly
or uniformly distributed.
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Comparison of the frequencies of the different
types of spatial patterns reveals similarities both
between lesions and disorders, especially in the
cerebral cortex [17]. First, AR protein aggregates exhibit
a similar range of spatial patterns in AD [13], DLB [15],
and in Down’s syndrome [2]. Second, PrP aggregates
in CJD show essentially the same types of distribution
as the AP deposits in AD [14,18]. Third, cellular
inclusions in AD, DLB, PiD, and corticobasal degene-
ration (CBD) exhibit a similar range of spatial topo-
graphies [17]. Hence, despite their morphological and
molecular diversity, different lesions often exhibit
a common type of spatial distribution in the brain.
A possible explanation is that the lesions all develop as
a result of the degeneration of specific neuroanatomical
pathways. In the cerebral cortex, the cells of origin of
the long and short cortico-cortical projections are
clustered and occur in bands that are distributed along
the cortical strip. In the primate brain, for example,
individual bands of cells associated with a particular
projection are 500-800 pm in width and traverse the
cortical laminae [28]. There is a regular distribution of
bands along the cortex although there is also
a complex pattern of branching and rejoining of the
groups of cells. The spaces between the bands of cells
are occupied by afferent or efferent connections with
different cortical sites or with subcortical regions. In
the disorders studied to date, the estimated width of
the lesion clusters and their planar distribution along
the cortex is consistent with their development in
relation to these cell clusters [17]. This suggests that
the most common explanation for the regularly
distributed clustering observed in the cerebral cortex
is that the lesions develop in association with
degeneration of the cortico-cortical pathways and
that this pattern of degeneration is common to many
forms of neurodegenerative disease. Hence, despite
differences in morphology and molecular diversity,
pathological lesions often exhibit similar spatial
patterns, implying a degree of overlap between the
different disorders and shared pathological
mechanisms [17].
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