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A b s t r a c t 

Lipopolysaccharide (LPS) is a  potent immunogen when administered locally and/or systemically. The peripheral 
immunization with LPS could contribute to the progression of neurological diseases because a strong link between 
neuroinflammation and dopaminergic degeneration has been found. The switch between the survival and neuronal 
death in substantia nigra could be related to M1 (neurotoxic) and M2 (neuroprotective) microglia phenotypes. In this 
review, we present the current findings about microglia roles, biomarkers, and natural or synthetic immune modula-
tors determined in the LPS-based murine model.
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Introduction 

Neuroinflammation is defined as an inflammato-
ry response mediated by the production of cytokines 
(tumour necrosis factor α (TNF-α), interleukin (IL)-1β, 
IL-4, IL-6), chemokines, mitochondrial nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase, 
inducible nitric oxide synthase (iNOS), reactive oxygen 
species (ROS, superoxide, hydroxyl radicals); and glio-
sis (astrocytes and microglia) in the central nervous 
system (CNS) and in the peripheral nervous system 
(PNS) [7,24,25,55]. In this context, the microglia acti-
vation has been associated with persistent neuronal 
damage, changes in long-term potentiation, motor 

and cognitive dysfunction in neurodegenerative 
diseases [9,37,87,96]. But as per the recent studies, 
microglia is related to maintenance of homeostasis, 
modulation of neurogenesis and cognitive processes 
in the healthy adult brain [3]. 

To understand the complete cellular and molec-
ular mechanisms underpinning the neuroinflam-
matory diseases such as Parkinson disease (PD), 
paraquat, 6-hydroxydopamine (6-OHDA) and lipo-
polysaccharide (LPS) induced animal models have 
been used. The paraquat model enables the degene-
ration of dopaminergic and gamma aminobutyric 
acid (GABAergic) neurons with a slight presence of 
inflammation; while the 6-OHDA model, although 
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it promotes the death of dopaminergic neurons, 
mainly in the substantia nigra (SN), is accompanied 
by discrete neuroinflammation at the site of injury 
[11,42,74,90]. 

Lipopolysaccharide is an endotoxin found in 
the cell wall of gram-negative bacteria, which can 
interact with a variety of cells through the toll-like 
receptor 4 (TLR4) [64,69]. The local or peripheral 
administration of LPS activates microglia [104] and 
astrocytes [46], immune cells and macrophages-like 
cells in different organs of the body [55,56,83].  
The peripheral injection of LPS-induced endotoxe-
mia favours increased brain levels of interleukins, 
prostaglandins, nitric oxide, and other modulator 
substances. Injection of LPS directly into the CNS 
can induce an inflammatory response similar to 
peripheral administration [29,38,81,85]. Hence, the 
pathophysiology of PD, neurological disorders relat-
ed to prenatal systemic inflammation, septic shock, 
gut-brain axis in maintaining homeostasis [22] and 
the search for new anti-inflammatory drugs can also 
be studied using LPS-induced models [4,5,34,39].

Lipopolysaccharide-related murine models

In the central and peripheral nervous systems, the 
LPS effects have been evaluated from several doses 
and two administration routes (local and peripher-
al). Two to ten μg of LPS has been used for unilat-
eral intracranial injection [4,8,44,94], while doses of 
0.05 to 5 mg/kg have been evaluated in models of 
intraperitoneal injection [13,17,87], highlighting the 
LPS derived from Escherichia coli, serotype 055:B5 
as the most used one in preclinical research. With 
regard to main LPS effects, the intracranial injec-
tion of this immunogen produces dose-dependent 
microglial activation and increases neurodegenera-
tion in susceptible brain nuclei (e.g. SN) in mice and 
rats [4,8,30,44,55,56,93]. Furthermore, depending on 
the LPS that is injected in SN [24,78], globus palli-
dus [102], neostriatum [19] or lateral ventricles [43], 
the microglial activation is indistinctly characterized 
by morphological changes, cellular stress and anti- 
and pro-inflammatory cytokine production. On the 
contrary, the intraperitoneal injection of LPS in adult 
rats (LPS-induced endotoxemia) causes microglia 
migration (and priming) in a dose-dependent man-
ner in substantia nigra (pars compacta, compacta 
dorsal and pars reticulata) and damage in periphe-
ral organs [10,13,17,87]; while in mice the chronic 

LPS administration induces motor deficits caused 
by alterations in the dopaminergic neurons of SN 
[16,50,65], and cellular stress in organs [72]. In addi-
tion, LPS promotes loss of dopaminergic neurons of 
neonatal rats when their mothers receive the intra-
peritoneal administration of this immunogen on day 
9.5 [39] or 10.5 prenatal [110]. 

Lipopolysaccharide and microglia 
polarization

Lipopolysaccharide has been used as a  classical 
toxin to activate immunocompetent cells and trigger 
a systemic and central inflammatory response [56,96]. 
LPS consists of a  lipid portion called lipid A, a  lipo-
polysaccharide O  (core) and an oligosaccharide O.  
Lipid A  is responsible for the activation of macro-
phages and the production of pro-inflammatory 
cytokines. The polysaccharide O  gives the bacteria 
its serological specificity, and the oligosaccharide O  
is responsible for linking the polysaccharide O to the 
lipid A  [84]. The LPS binds to the specific receptor 
complex CD14/TLR4/LBP that is found in the mem-
brane of microglial cells and induces their activation. 
The LPS, once recognized by the membrane-associat-
ed CD14/TLR4/LBP receptor complex, transports the 
lipid A to the MD-2 protein, which can be found solu-
ble or bound to TLR4 through hydrogen bonds [1,54]. 
The formation of this complex is the key for the initi-
ation of intracellular signalling. 

Microglia are the resident mononuclear phago-
cytes in the CNS that belong to the non-neuronal 
glial cells [36]. Microglia change their morphology on 
activation from the inactive or resting state due to 
the CNS damage caused by infections, brain trauma, 
injury, ischemia, etc. The activated microglia exist 
either in the classical M1 phenotype or alternative 
M2 phenotype and these two phenotypes are the 
two activated states that represent their extreme bio-
logical functional states and determine their physi-
ological characteristics. The activated classical M1 
phenotype is seen due to the presence of high levels 
of interferon (IFN), tumour necrosis factor (TNF) and 
LPS and in turn produces and releases inflammatory 
mediators that are toxic to the neurons, thus leading 
to the neuroinflammation or neurodegeneration and 
damage [26]. On the contrary, the activated alterna-
tive M2 phenotype is seen due to the presence of 
high levels of interleukins (IL-4, IL-13) and in turn pro-
duces and releases anti-inflammatory cytokines and 
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various neurotrophic factors that protect and regene-
rate the neurons, thus leading to the neuroprotection 
and recovery [61]. 

As per the recent studies, M1 and M2 phenotypes 
can be distinguished basing on inflammation-relat-
ed cytokines [48], specific cell membrane proteins 
and arginine metabolism-associated molecules [97]. 
LPS is a TLR4 agonist that can polarize the microglia 
into the M1 phenotype and also effectively induc-
es inflammatory responses, thus reducing the M2 
phenotype and its anti-inflammatory markers [59].  
This is the reason behind selecting LPS-induced 
neuro inflammation in various studies. LPS-induced 
neuroinflammation is mediated by TLR4/nuclear fac-
tor (NF)-κB signalling pathway and the expression of 
NF-κB is crucial for the M1 phenotype of microglia 
[103]. In order to cure neuroinflammation, several 
researchers have proposed different sources but the 
common solution among all that research includes 
the inhibition of the M1 phenotype and promotion 
of the M2 phenotype by suppressing TLR4/NF-κB 
pathways [79,101,105]. Even though several models 
exist for neuroinflammation, LPS is the best and 
most widely used one [6], especially as those includ-
ing the study of microglia as LPS play a key role in 
microglia polarization.

In vitro and in vivo studies have suggested that 
LPS exerts microglia polarization as evidence of 
microglia plasticity [68,91]. For example, the unilat-
eral microinjection of 5 μg of LPS in SNpc of male 
rats induces an increase in the M1 phenotype, 
which was associated with the loss of dopaminer-
gic neurons at 1, 3 and 7 days post-injection. This 
neurotoxic event was evidenced by high levels of 
oxidative stress, upregulated expression of iNOS, 
cyclooxygenase 2 (COX-2) and nitrotyrosine, and 
downregulated expression of arginase 1. However, 
facts were reversed with capsaicin, where a neuro-
protective effect, characterized by the M2 microgli-
al phenotype, is increased, arginase 1 expression is 
increased and low levels of oxidative stress mark-
ers in rat SN was determined [8]. In the female rats, 
the single administration of 5 μg of LPS into SNpc 
favours loss of dopaminergic neurons at 7 days after 
microinjection. In the first 24 h post injection of LPS, 
a neurotoxic effect was evidenced by M1 microgli-
al activation, accumulation of fluorescent oxidized 
hydroethidine, upregulated proinflammatory mark-
ers (NF-κB p-p65), inflammatory markers (TNF-α, 
IL-1β and PEG2) and oxidative stress markers (COX-2 

and iNOS). However, this fact was reversed with 
pre-treatment by immune modulators such as soma-
tostatin, where an increased level of M2 polarization 
and low levels of neuronal death or oxidative stress 
was observed [4]. Additionally, the conversion of M1 
to M2 polarization is determined using treatments 
with dexamethasone [12], Ginsenoside Rg1 [88], G1 
agonists [62] or polydatin [44].

A lot of evidence has been used to support that 
LPS favours the M1 microglia phenotype, because of 
increased CD86, IL-1β, CCL5, IL-6, iNOS, and CXCL1 
mRNA levels, but it did not induce significant chang-
es in Arg1, CD06, IGF-1 and PPARg mRNA levels, 
which are microglia phenotype markers [89]. Some 
studies suggested that such factors as dosage and 
combination of LPS with other stressors can alter 
the M1/M2 switch [17,80]. In this context, a study 
performed by Rabenstein et al. [73] reported that 
the microglia polarization is a derivative of LPS, or 
LPS with a cell pre-conditioned by ischemia and in 
a primary microglia culture obtained from pup rats; 
in the 10 ng/ml LPS group, the polarization to the M1 
microglial phenotype was detected, while that in the 
group with LPS and pre-conditioning level increased 
of IGF1, an anti-inflammatory factor [40], was found. 
Serdar et al. [76] injected intraperitoneally 0.1 mg/kg  
LPS followed by hypoxic ischemic brain injury in rats; 
this study demonstrated reduction in neuronal densi-
ty, microglial activation on hippocampus and cerebral 
cortex, changes in gene expression profiles associat-
ed with M1/M2 microglial polarization. They observed 
a significant increase in the gene expression levels of 
iNOS, IL-1 and IL-6 in the LPS group. However, in the 
LPS/hypoxic ischemic brain injury group, the increase 
in these molecules was more significant, showing 
that even if LPS is a  powerful microglial activator, 
the polarization of these cells is closely related to the 
simultaneous events that occur in the body.

M1 and M2 microglia, cell signalling 
and modulators

The level of activation of microglial cells depends 
on the intensity, duration and type of the stimulus 
and can generate a  neuroprotective or neurotoxic 
response [30,31]. At the level of the CNS and PNS, 
two phenotypes of microglia, M1 and M2, have been 
distinguished. The M1 phenotype (neurotoxic) is 
characterized by the release of pro-inflammatory 
factors from thin branched microglia that can be 
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derived to amoeboid (typical hallmark of neurode-
generation); while M2 microglia retains branched 
morphology and promotes the release of anti-in-
flammatory factors leading to neuroprotection [8,92]  
(Fig. 1). These morphological changes have been 
associated with the expression of the genes Ccr2, 
Nox2, TNF, Ly6c, IL12a, IL12b and Icam1 [17]. To assess 
microglial activation, markers such as ionized calci-
um binding adapter molecule-1 (Iba-1) [44], cluster of 
differentiation 68 (CD68) [67], CD11b or CD11b/c [8], 
CD206 [2] and complement receptor type 3 (CR3) 
[109], which is commonly named as OX42 [30], have 
been used. Among these markers, the most com-
mon ones are CD16/32 and CD86 for the M1 subtype, 
and CD206 and CD11b for M2 microglia [108] (Fig. 2). 

The M1 and M2 microglia phenotypes exhibit 
different intracellular signalling. In Figure 2, the inter-
action of anti- or pro-inflammatory mediators to 
define microglia roles is illustrated. In the case of 
M1 microglia, the binding of LPS to the MD2/TLR4 
induces the upregulation of nuclear factor kappa-light 
chain enhancer of activated B-cell (NF-κB) gene, via 
myeloid differentiation primary response 88 (MyD88) 
dependent pathway, leading to the release of the first 
phase of pro-inflammatory mediators (PIMs) such as 
TNF-α, IL-1α, IL-1β, IL-6, IL-12, IL-18 and IL-23 and inter-
feron regulatory trans cription factor 3 (IRF3) gene, via 
MyD88 independent pathway, leading to the release of 
the second phase of PIMs such as IFN-α, IFN-β, IFN-γ, 
IFN-ω, IFN-ε, IFN-κ and IFN-ζ. The released PIMs such 

Fig. 1. Switch between neuroprotective neurotoxic microglia in an lipopolysaccharide (LPS)-related model.  
LPS induces the activation and conversion of inactive microglia to active M1 neurotoxic microglia, which 
in turn releases pro-inflammatory cytokines that are taken up by a healthy neuron in a retrograde manner 
and thus causes neuronal damage. The production and release of TNF-α, also a pro-inflammatory cytokine 
released by microglia, induces the activation of astrocytes. Thus, activated astrocytes release large amounts 
of anti-inflammatory cytokines and certain neurotrophic factors, such as BDNF, CDNF and GDNF, which in turn 
induce the conversion of inactive microglial cells to active M2 neuroprotective microglial cells. Thus, activated 
microglial cells also release neurotrophic factors and anti-inflammatory cytokines that are taken up by dam-
aged or degenerated neurons and leads to the recovery of the neuron from damage induced by LPS.

Neuron 
(healthy)

Neuron 
(damaged) Neuron 

(repaired)

Astrocyte 
(inactive) Astrocyte 

(active)
Anti-inflammatory mediators

Microglia 
(inactive)

Pro-inflammatory mediators



Fig. 2. Schematic view of lipopolysaccharide (LPS)-related cell signalling in M1 and M2 microglia subtypes. 
Presence of LPS or interferon (IFN) induces the activation of microglia (M1 type). Binding of LPS to toll-like 
receptors (TLR) and IFN-β and IFN-γ to their corresponding receptors (IFN-βR and IFN-γR) leads to the induction 
of NF-κB, IRF3 and IRF1 genes through corresponding pathways. These genes in turn lead to the production 
and release of huge amounts of pro-inflammatory mediators, which eventually results in the neurodegene-
ration. Similarly, the presence of interleukins (IL)-1, IL-4, IL-10 and IL-13 induces the activation of microglia 
(M2 type). Binding of IL-4, IL-13 to IL-4R, and IL-1 and IL-10 to their corresponding receptors (IL-1R and IL-10R) 
leads to the induction of IRF4, ERK and STAT3 genes through their corresponding pathways. These genes in 
turn lead to the production and release of huge amounts of anti-inflammatory mediators, which eventually 
results in the neuroprotection. The presence of IL-4 and IL-13 in huge amounts also switches the M1 microglia 
to M2 microglia directing towards neuroprotection. Whereas, the presence of TNF-α, IL-1β and IFN-γ in huge 
amounts switches M2 microglia to M1 microglia and directs towards the neurodegeneration. All the markers 
for microglia, M1 microglia and M2 microglia are mentioned next to the image in the figure. 
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AKT – activator of protein kinase B, BDNF – brain derived neurotrophic factor, CCL-c – c chemokine ligand, CCR-c – c chemokine receptor, CD – cluster of 
differentiation, COX – cyclooxygenase, CX3CR1 – C-X3-C motif chemokine receptor-1, EGR – early growth response, ERK – extracellular receptor kinase, GDNF 
– glial cell-line derived neurotrophic factor, GPR – G-protein coupled receptor, Iba – ionized calcium-binding adaptor protein, IFN – interferon, IGF – insulin-like 
growth factor, IKK – I kappa B kinase, IL – interleukin, iNOS – inducible nitric oxide synthase, IRF – interferon regulatory transcription factor, JAK – Janus kinase,  
LPS – lipopolysaccharide, MARCO – macrophage receptor with collagenous structure, MyD – myeloid differentiation factor, NGF – nerve growth factor,  
NF – nuclear factor, OX-42 – an antibody designed to detect CD11b, PPAR – peroxisome proliferator-activated receptor, RIP – receptor interacting protein,  
RNS – reactive nitrogen species, ROS – reactive oxygen species, STAT – signal transducer and activator of transcription, TAK – TGF-β activated kinase-1,  
TBK – Tank binding kinase-1, TGF – transforming growth factor, TIR – toll interleukin-1 receptor, TIRAP – TIR domain containing adaptive protein, TLR – toll-like receptor, 
TNF – tumour necrosis factor, TRAF – TNF receptor associated factor, TRIF – TIR domain containing adaptor-inducing interferon β, YM-1 – neutrophil granule protein.
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as IFN-β and IFN-γ induce the upregulation of IRF-1 via 
Janus kinase (JAK) – signal transducer and activator  
of transcription (STAT) pathway, leading to the release 
of the third/final phase of PIMs such as COX-2, 
chemokine ligand 2 (CCL2), c-c chemokine receptor 2 
(CCR2), CCL20, MARCO, reactive oxygen species (ROS), 
reactive nitrogen species (RNS) and iNOS (inducible 
nitric oxide synthase) [17,33,35, 63,94,95]. 

For the M2 microglia phenotype (Fig. 2), the bind-
ing of IL-4 and IL-13 to their receptors leads to the 
upregulation of interferon regulatory factor 4 (IRF4) 
gene and releases the first phase of anti-inflamma-
tory cytokines, mediated by JAK1/3-STAT6 pathway. 
A second route is related to IL-1; the binding of IL-1 
to its receptor leads to the induction of extracellu-
lar signal-regulated kinase (ERK) gene and releases 
several neurotrophic factors, mediated by protein 
kinase B (AKT). Similarly, the binding of IL-10 to its 
receptor leads to the expression of STAT3 gene and 
releases the third phase of anti-inflammatory medi-
ators, mediated by JAK1/tyrosine kinase 2 (TYK2)-
STAT3 pathway [21,32,51]. 

To date, several immune modulators that help in 
switching the microglial phenotype from M1 to M2 
have been reported. Almost all these modulators, 
whether natural or other, decrease the markers and/
or pro-inflammatory mediator production and/or 
release and thus direct towards the M2 phenotype 
for protection and/or restoration purposes. Most 
commonly used and reported natural modulators 
are triterpene and stilbenes (Lupeol, Fagarsterol, Res-
veratrol, Malibatol A, Geraniin, Compound A (Cpd A), 
Paeoniflorin-6’-O-benzene sulfonate, Aloe-emoidin) 
[15,53,70,71,75,100,111], flavonoids (Quercetin, Cur-
cumin, Naringenin, Apigenin, Chrysin, Procyanidin, 
Epigallocatechin gallate, Apocynin, Paeonol) [20,27, 
28,45,47,49,60,82,86,98,99,106]; terpenes (Forskolin 
or Coleonol, Triptolide, Terpinen-4-ol) [18,41,57,66] and 
alkaloid – Berberine [23,77]. To date, other synthetic 
immune modulators have been evaluated e.g. mono 
unsaturated fatty acid (Cis-palmitoleate) [14], Fluoro-
quinolone (Besifloxacin) [58], dietary supplement (Nia-
cin) [107], Catecholamine (Dobutamine) [52], Cilostazol 
and β-ionone [75] in LPS-stimulated mouse alveolar 
macrophages. Both natural and synthetic immune 
modulators are evaluated in pre-clinical approaches.

Conclusions

Lipopolysaccharide-based inflammation produc-
es neurotoxic (M1) and neuroprotective (M2) micro-

glia. The M1 phenotype promotes cellular stress in 
the early stages of the disease, while M2 microglia 
repair or block the brain damage progression. Some 
natural and synthetic modulators that could favour 
the M1/M2 conversion have been reported, but 
robust evidence regarding cell signalling must be 
completed. Furthermore, the morphological changes 
and cytokines releasing profiles help to describe the 
microglial dynamics, but the proper identification of 
the M1 : M2 ratio would represent the real challenge 
and position of disease, thus would better promote 
health of the individual.
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