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Prion diseases: a riddle wrapped in a mystery inside an enigma

PPaawweell  PP..  LLiibbeerrsskkii

Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology, Chair of Oncology,

Medical University of Lodz, Poland

Folia Neuropathol 2008; 46 (2): 93-116

Review article

A b s t r a c t

It is now widely accepted that many structurally diverse proteins can misfold and cause so-called “conformational
diseases”, including the most common neurodegenerations, Alzheimer’s disease and Parkinson’s disease. The conversion
of largely α-helical or random coil proteins into cross-β-pleated sheet conformations that form first oligomers and
then fibrils underlies these disorders. However, this α- to β-structure transition seems to be a generic propensity of
all globular proteins, not only those involved in neurodegenerations, not to mention “prion diseases”. Metaphorically,
all these neurodegenerations are “infectious” in the sense that misfolded β-sheeted conformers are formed in a nucleation
process in which preformed metastable oligomer acts as a seed (a nucleus) to convert a normal into an abnormal
protein. However, in none but transmissible spongiform encephalopathies (TSEs) has infectivity in a microbiological
sense ever been observed, and even in TSEs the formation of misfolded protein is not necessarily accompanied by
the generation of infectivity de novo. Furthermore, certain “prion diseases” are not TSEs but just “proteinopathies”
caused by accumulation of abnormally misfolded PrPd. The presence of a massive amount of PrP-amyloid and no infectivity
casts doubts on whether TSEs are really infectious amyloidoses. The misfolding of PrP may yet prove to be an
epiphenomenon secondary to infection with a still unknown infectious agent.
If, on the other hand, the purely proteinaceous character of the replicating unit of TSE infectivity is ultimately found
to be correct, the critical issues become 1) the mechanism by which a misfolded PrP template induces normal protein
molecules to adopt the same pathologically misfolded conformation, and 2) the intracellular conditions that are
responsible for strain differences in these molecules.
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Introduction

The transmissible spongiform encephalopathies
(TSEs) or prion diseases are a group of neurodegenerative
disorders which include kuru [129], Creutzfeldt-Jakob
disease (CJD) [135], Gerstmann-Sträussler-Scheinker

(GSS) disease [244], and fatal familial insomnia in man
[225,249,250], natural scrapie in sheep, goats [86-89], and
mouflons [360], transmissible mink encephalopathy in
ranch-reared mink [55], chronic wasting disease of deer,
elk and moose in the USA and Canada [155,219,355-357],
bovine spongiform encephalopathy or “mad cow disease”
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[347] and its analogues in several exotic species of
antelopes [90,119,184,196] and wild felids in zoological
gardens [358], and feline spongiform encephalopathy in
domestic cats [365].

These disorders are caused by a still not completely
understood pathogen variously referred to as a “prion”
or a slow, unconventional or atypical virus, or “virino”
[3,65,214,215]. Despite wide acceptance of the prion
theory, these designations still reflect different views about
the real molecular structure of the pathogen and, by the
same token, our ignorance of its nature. Those who prefer
to view this pathogen as composed “predominantly or
exclusively” of a pathologically folded (misfolded) protein
(PrPres, PrPSc; Sc, from scrapie or PrPd; d, from disease; PrPTSE,
TSE from transmissible spongiform encephalopathy), use
the term “prion” [284,286-288]; hence the term “prion
diseases” [65,118,345].

The “virino” hypothesis suggests that the pathogen
is a molecular chimera composed of a still-to-be-
discovered nucleic acid and a shell protein which is host-
encoded (perhaps PrPd) [188-190]. The virus hypothesis
simply suggests that the pathogen is a yet-to-be-
identified unconventional virus [112,113,232,233,235,236].
The “unified theory” of Weissmann [343,344,346], not
unlike the virino theory, suggests that the agent is 
a molecular chimera of the misfolded protein that
confers infectivity and an unidentified oligonucleotide
that specifies strain characteristics.

Historical background

Scrapie, a disease of sheep and goats, has been
known under several names for some 200 years
(“rubbers”, “rickets”, “goggles”, “shakings” “shrewcroft”
in England; “scratchie”, “cuddie trot” in Scotland; “der
Trab”, “der Traberkrankheit” or “die Zitterkrankheit” in
Germany; “la maladie convulsive”, “la maladie follie”, “le
tremblante”, “la prurigo lombaire” in France; and
“trzęsawka” in Poland). One of the earliest scientific
reports on scrapie was published in the “Agricultural
Improvement Society at Bath” (later changed to “Bath
and West Society”) [10] and, as a paragraph, in the
“General View of the Agriculture of Wiltshire” published
by Thomas Davies in 1811 [255]. In 1848, Roche-Lubin
[293] claimed that scrapie is caused either by sexual
excesses of rams or, alternatively, by thunderstorms.
M’Gowan [255] himself suggested sarcosporidium as the
causative agent.

The first interpretation of scrapie (“tremblante”) as
a virus (“a filterable agent”) disease is credited to the
French veterinarian Besnoit in 1899 [22], and the

transmissible nature of TSEs was proven in 1936 by the
seminal experiments of Cuille and Chelle [84-89]. The
contention that scrapie is an infectious disease caused
by a filterable agent was accepted with scepticism until
1938, when W.S. Gordon, then a deputy director of the
Moredun Institute in Edinburgh, Scotland repeated the
experiments of Cuille and Chelle using 697 animals, of
which some 200 developed scrapie [152,278]. Ironically,
the infectious nature of the scrapie agent had already
been inadvertently confirmed in 1935, when some 7%
of 18 000 sheep vaccinated against louping ill developed
scrapie [151-153]. The vaccine had been produced from
sheep brains and also showed that scrapie infectivity
could survive 0.35% formalin for more than 3 months.
A similar error was repeated recently [338,367].
Interrupted by World War II, scrapie research was
continued by D.R. Wilson [359], who was reluctant to
publish data on such an unorthodox pathogen, but the
scrapie community was well aware of the unusual
properties of the scrapie agent, in particular its high
resistance to formalin and heat.

Scrapie was transmitted from goats to mice by
Chandler [69-72] and from sheep to mice by Morris and
Gajdusek [262], enabling more convenient laboratory
research, and resulting in new hypotheses about the
nature of the causative agent every year or two. It was
proposed to be a self-replicating membrane [8,134,
174-176] or a subvirus (not well envisaged) linked to 
a membrane with a “linkage substance” [1,2], a viroid
[109-111,226,227,238,241-243], a spiroplasma [15-19], or
a retrovirus-like element [5-7,230,320,332]. Suffice to say
that none of those hypotheses could be substantiated
despite exhaustive use of all methods of both classical
and molecular virology, yet the virus hypothesis remains
plausible [232].

The first TSE in humans was kuru, discovered by
Gajdusek and Zigas [128,213,214,218]. The elucidation 
of kuru opened a new field in human medicine and 
initiated more than 50 years of research which has
contributed enormously to our understanding of
neurodegenerative disorders of the central nervous
system, including Alzheimer’s disease [126,127,204,218].
Kuru was transmitted to chimpanzees in 1965 [129], and
was quickly followed by transmission of Creutzfeldt-Jakob
disease [135] and GSS [244]. The most recent transmission
of a human TSE was fatal familial insomnia [81,333].

In 1987, Gerald A.H. Wells and his colleagues
described a cow with a novel form of TSE [347]
(parenthetically, the first case of BSE had actually been
observed in a nyala by Jeffrey et al. [184]). The BSE
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epidemic reached a climax in 1992 with more than 37
000 cases, and subsequently steadily declined to 612 in
2003 and x in 2005 [34,35,78]. However, in 1996 Will et
al. [353] reported a new variant of CJD (vCJD), suggesting
on the basis of epidemiological evidence that it was due
to a BSE infection, which was subsequently substantiated
by laboratory studies [52,82,164,312]. Although the
number of vCJD cases is decreasing (Table I) [165], and
the shape of the outbreak appears to be duplicating that
of BSE at an interval of 7-8 years, their occurrence has
accelerated TSE research and transformed it from a rather
obscure field into a major scientific endeavour.

Nomenclature

The nomenclature of PrP species is confusing. PrPc

is a normal cellular isoform. PrPSc (PrPres) is a pathologi-
cal misfolded protein. PrPSc is operationally defined as
resistant to proteinase K (PK) and insoluble in denatu-
ring detergent; however, some pathological isoforms 
of PrP have recently been found not to be PK-resistant
[123]. Thus, we prefer to use the neutral term PrPd, 
which denotes that misfolded species of PrP which is
disease-associated, PK-resistant or not, or PrPTSE. PrP 27
– 30 is a proteolytic cleavage product of PrPd [31,245].

YYeeaarr ssCCJJDD iiCCJJDD ffCCJJDD GGSSSS vvCCJJDD TToottaall  ddeeaatthhss

1990 28 5 0 0 – 3333

1991 32 1 3 0 – 3366

1992 45 2 5 1 – 5533

1993 37 4 3 2 – 4466

1994 53 1 4 3 – 6611

1995 35 4 2 3 3 4477

1996 40 4 2 4 10 6600

1997 60 6 4 1 10 8811

1998 63 3 3 2 18 8899

1999 62 6 2 0 15 8855

2000 50 1 2 1 28 8822

2001 58 4 4 2 20 8888

2002 72 0 4 1 17 9944

2003 79 5 4 2 18 110088

2004 50 2 4 2 9 6677

2005 66 4 8 5 5 8888

2006 66 1 6 3 5 8811

2007 59 2 4 1 5 7711

2008* 23 2 0 2 0 2277

TToottaall 997788 5577 6644 3355 116633 11229977

TTaabbllee  II.. Number of definite and probable cases in the UK, up to 2nd May 2008 (Source: National CJD Surveillance
Unit. www.cjd.ed.ac.uk; modified) 

* As at 2nd May 2008; number of definite/probable vCJD cases still alive: – 3; total number of definite or probable vCJD cases (dead and alive): – 166 
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PrP, its gene, the “prion hypothesis”

PrPc is a highly conserved sialoglycoprotein encoded
by a cellular gene mapped to chromosome 20 in man
and chromosome 2 in mouse [14,37,75,138,157,266,
332,324]. The gene is ubiquitous [136,201,282,339]; it
has been cloned in numerous mammalian species,
included marsupials, and there are analogues of this
gene in birds [124,158,307,308,361] reptiles [319],
amphibians [328], and fish [267]; those in Drosophila
and nematodes appear to be cloning artefacts [348].
Recently, the PrP gene was cloned in several exotic
species of mammals – Pekingese dog [363], Amur tiger
[362], and African lion [364]. A mammalian gene
encoding for PrP demonstrates several interesting
features [339]. There are two variants of a signal
peptide; the longer one is present in most mammalian
orders including marsupials and starts with consensus
sequence MVKSH; the shorter one is observed in
primates, flying lemur, tree shrew, rabbit and rodents
and starts with sequence MAN. The number of repeats
varies from 2 (squirrels) to 7 (leaf-nose bat and
gynmure). The latter finding is particularly interesting
because in humans the expanded number of repeats
is linked to familial TSEs (see later). The eutherian
repeats are the highly conserved consensus sequence
P(Q/H)GGG(g/-)WGQ; the first repeat always has Q. The
sequence 143-163 contains a highly conserved
hydrophobic transmembrane region. The globular
structured region is highly conserved and most
substitutions are conservative replacements. In
particular, Cys216 and Cys252 as well as Asn-X-Thr
necessary for glycosylation are highly conserved [339].

There are several polymorphic sites within PRNP [247].
The best known is Met to Val polymorphism at position
129 in humans [150,269,270]. Of note, the human
polymorphic site is not polymorphic in chimpanzees [321]. 
In Northern European populations, the predominant allele
is 129Met, with a frequency of 0.65 [247]; in Iceland 0.46
[132]; in Greece 0.5 [300]; in Poland 0.45 [36]. 129Met Met

is extremely rare in Japan, while it is predominant in the
eastern Highlands in Papua New Guinea, with a frequency
of 0.55. It is also high in several Northern Indian
populations. A 219 codon polymorphism (E219K) was
found in Japan [315], while several polymorphisms
(G142S; N171S) were found frequently in Africa, but their
significance is unknown [247].

Polymorphism at codon 129 influences the
susceptibility to human TSEs as well as modifies their
phenotypic appearances. The homozygous status of

codon 129 (129Met Met or 129Val Val) is overrepresented in both
sporadic [272] and iatrogenic CJD [80]. Variant CJD is the
most distinctive example of this rule – except for a case
of vCJD following blood transfusion [280] all other vCJD
cases are homozygous 129Met Met [279]. In contrast, 2 of
3 PrPd-positive appendix samples (of 11 109 appendices)
were 129Val Val [181]. The latter data strongly suggest that
individuals of 129Val Val and 129Met Val are also susceptible
to vCJD. The situation is thus similar to kuru [68], where
individuals of 129Val Val and 129Met Val genotype were also
susceptible, but those of 129Met Met genotype were
overrepresented in the younger age group, while those
of 129Met Val were overrepresented in the much older age
group.

The cause of differences in susceptibility between
different genotypes is unclear, but Tahiri-Alaoui et al.
[330] demonstrated that rPrP-129Met has a higher
propensity to form oligomers enriched in β-sheets,
while PrP-129Val shows a higher tendency to fold into
α-helices. In contrast, following folding into oligomers,
the resistance to proteinase K was the same for both
allelomorphs. How the latter phenomenon may be
translated into differences in susceptibility, not
unexpectedly, is unknown.

The most intriguing role of the homozygocity at codon
129 is its overrepresentation in certain dementive
conditions such as Alzheimer’s disease [139] or individuals
with temporal lobe epilepsy [203]. These findings might
suggest that the status of codon 129 may influence some
poorly defined aspect of the dementive process that is
not entirely specific for TSEs, but might be associated with
a process of protein misfolding in general.

PrP is plausibly one of the most extensively studied
proteins [64,65]. Human PrPc contains 253 amino acids
encoded by an intronless ORF [14]. Three forms of PrPc

exist – one completely translocated and two rather
infrequent, transmembrane variants CtmPrP and NtmPrP
[160,161] – and the sequence encoding residues 151-165
that form the transmembrane region is highly
conserved [339]. Furthermore, PrPc undergoes
endoproteolytic cleavage to yield 17 kDa N-terminally
truncated form C1, while PrPSc yields a slightly larger
peptide designated C2 [74].

PrP 27-30 was first discovered as a protein co-
purifying with infectivity in extracts derived from brains
infected with the 263K strain of scrapie agent [31,114,
245], which led to the conclusion that PrP 27-30 is part
of infectivity.

The “prion” hypothesis, which is deeply rooted in
this association between PrP and infectivity, was
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formulated by Stanley B. Prusiner in 1982 [283,285]. The
hypothesis postulated that the scrapie agent was 
a proteinaceous infectious particle, because infectivity
was dependent on protein but resistant to methods
known to inactivate nucleic acids. A similar proposal
had been presented more than a decade earlier by
Gibbons and Hunter [134], Griffith [154], and Levine
[211], who all developed the earlier suggestion of Tikvah
Alper and her co-workers [9], based on irradiation
studies, that the scrapie agent was devoid of a disease-
specific nucleic acid. While the theoretical approach of
Alper et al. was strongly criticised by Rohwer [295,296],
Cho and other investigators had found previously that
scrapie infectivity was sensitive to proteolytic digestion
[77,257].

Like many amyloid proteins, PrP 27-30 is a proteo-
lytic cleavage product of a larger precursor protein, 
PrP 33-35d [222, 352]. However, PrP 33-35d is not the
primary product of the cellular gene. It has an amino
acid sequence, glycosylinositol phospholipid anchor and
posttranslational modifications (such as glycosylation
and the attachment of GPI, glycophospholipid inositol
anchor) identical to those of PrP 33-35c but strikingly
different physicochemical features [268,325,327]; 
in particular, PrPc is completely degraded by limited 
proteolysis, but PrPd is only partially degraded, yielding 
a core protein (PrP 27-30) which may be visualised by
electron microscopy as scrapie-associated fibrils (SAF)
[252,253], or prion rods [288]. To become PrPd, PrPc must
first be transported to the cell surface and then through
the endosomal-lysosomal pathway [32,246].

PrP has several interesting features. As already
mentioned, it is a glycoprotein with two Asn-
glycosylation sites (Asn181 and Asn197 for HuPrP or Asn180

and Asn196 for MoPrP) [206,268]; thus, PrP may exist
as unglycosylated, monoglycosylated and diglycosylated
isoforms of different electrophoretic mobilities and
glycoforms [82]. The unglycosylated glycoform com-
prises 5%, monoglycosylated 25%, whereas the
diglycosylated glycoform is dominant, comprising
70% of all glycoforms [268]. However, using 2D-PAGE
more than 30 glycoforms were discriminated [326].
There are subtle differences in the relative proportion
of different glycans (52 bi-, tri- and tetra-antennary 
N-linked oligosaccharides) between PrPc and PrPSc

[297,298] that may result from a decrease in the activity
of N-acetylglucosaminyl transferase III (GnTIII) toward
PrPc [298]. The latter finding may suggest an alteration
of the glycosylation pathways in TSEs. Of note,
changes in several enzymes involved in carbohydrate

metabolism were noticed some quarter of a century
ago by Millson and Bountiff [256], Kimberlin and Marsh
[192], and Marsh and Kimberlin [239].

The various combinations of glycosylation and
codon 129 genotype (see later) correlate to a certain
degree with the phenotypic expression of TSE. In particu-
lar, a distinctive glycosylation pattern is uniquely
present in both BSE and vCJD [82,164,187]. Although
glycosylation patterns “breed true”, i.e. they are retained
in passage [82], interconversions may occur in the 
presence of metal ions [82,341], and more than one
pattern may occur in different regions of the same
brain, or in the brain and peripheral organs of the same
patient [20]. The role of glycosylation in TSE
pathogenesis may be more complex, however. In
familial TSE, elimination of the first glycosylation site
by a mutation was observed [265]. In contrast,
elimination of PrPc glycosylation either by tunicamycin
treatment or by artificial mutation of Asn-N-linked
glycosylation sites does not prevent PrPSc formation
[199,210,331]. Of note, elimination of PrPc glycosylation
results in a peptide with some properties of PrPSc

[199,210] and an unglycosylated peptide (PrP 175-195)
rapidly acquires β-sheet conformation and forms
amyloid fibrils [33]. As Cancellotti et al. [56] stressed,
“the lack of sugar may facilitate TSE onset by inducing
PrP to misfold”. In contrast, in transgenic mice
overexpressing mono-glycosylated (G1: thr → Asp180 or
G2 Thr → Asp196) or un-glycosylated (both G1 and G2)
PrPs, none of PrPc become PK-resistant or insoluble in
detergents [56]. In other words, none of PrPc under such
experimental conditions acquired PrPSc-like properties.

There are further glycosylation differences in GPI
[325] to yield 6 different isoforms of GPI. Moreover, elimi-
nation of the C-terminal sequence encoding the GPI
anchor sequence results in a synthesis of unglycosylated
protein [294,342]. Collectively, glycosylation alterations
may be involved in TSE pathogenesis, but the
pathogenesis of that involvement is totally unclear.

Strains of the agent – still the strongest
argument against the protein-only
hypothesis, but is it really?

From the early work of Alan G. Dickinson and his
numerous collaborators [100,101,106-108,121] it was
known that the incubation period of scrapie was tightly
linked to the gene designated Sinc (in mice; from
scrapie incubation) and SIP (in sheep; from shorter
incubation period); Parry [277] even proposed that
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scrapie was a primarily hereditary disorder that was
only secondarily transmissible (lively discussions
between Dickinson and Parry dominated the field in
the 1960s) [99]. The discovery of Sinc was instrumental
in supporting the notion that the scrapie agent has an
independent genome [48]. It was subsequently shown
that Sinc (SIP) is identical to the gene encoding PrPc

[51], and that Sincs7 is congruent with Prn-pa, while Sincp7

is congruent with Prn-pb [261]. Furthermore, Prn-pa

(Sincp7) and Prn-pb (Sincp7) differ by two amino acids in
position 109 and 189 [350]. The existence of biologically
different strains of scrapie agent is still the strongest
argument against the protein-only nature of the scrapie
agent; however, recent advances in understanding of
the structural biology of PrP may have challenged the
latter notion.

Different strains of the scrapie agent can be
identified in terms of their stable biological
characteristics – those most widely used being the
length of the incubation period and the “lesion profile”,
i.e. semi-quantitative estimation of spongiform change
(perhaps resulting from autophagy – 212, 220, 316, 318)
in terms of brain topography [49,51,107]. The same
strain can be isolated from different hosts and the same
host can be infected with different strains. Furthermore,
the characteristics of a given strain may sometimes
undergo changes to yield a new strain with novel 
characteristics that are stable in subsequent passages.
Such changes would be consistent with the effects of
mutations in an (as yet unidentified) disease-specific
nucleic acid. 

Approximately 20 strains of scrapie agent have been
isolated from sheep and goats affected with clinical
scrapie [61,94]. Some isolates from sheep yield a mixture
of strains. The best known example is the “scrapie
sheep brain pool” (SSBP/1) from which 22A, 22C and
22L strains were isolated [60,94]. Some sources of sheep
scrapie are not transmissible to mice, for example the
CH 1641 isolate [120]; transmissible strains can be
divided into two groups on the basis of their properties
in two homozygous Sinc (Prn-p) genotypes of mice. The
ME7 group of agents exhibits a short incubation period
when passaged through Sincs7 (Prn-pa) mice  (s for short;
for example C57Bl mice) and a long incubation period
when passaged through Sincp7 (Prn-pb) mice (p for
prolonged; for example VM mice). The 22A group
exhibits exactly the opposite characteristics: short
incubation period in Sincp7 mice and long incubation
period in Sincs7 mice [96,102-104]. It has been
conclusively demonstrated that the Sinc gene is

congruent with the Prn-p gene; in other words PrP is
the product of Sinc [61,177,191,261]. All recent scrapie
isolates differ from the BSE strain, but the spectrum
of scrapie strains may have changed over the last 20
years [49].

Passage through a species different from that used
for the primary isolation is a useful method to
separate mixtures of strains and to isolate (select) new
mutant strains [79,193,195]. One of the best known
examples of the isolation of a mutant strain with totally
different characteristics from the original isolate is the
isolation of the 263K (the same as 237sc) strain of the
scrapie agent [193-195]. Preservation of strain properties
following passage through hosts of different 
Prn-p sequences strongly argues against the protein-
only nature of the scrapie agent. 

Two sets of experiments may be cited in support of
this viewpoint. First, strains of the scrapie agent may
undergo phenotypic changes in incubation period, lesion
profile, and the presence and amount of PrPSc-amyloid
deposition changes, which are compatible with
mutations of “conventional” pathogens [48]. Three
classes of strain stability have been established [48]. Class
I stability strains (ME7, 22C) possess stable characteristics
irrespective of the Sinc (s7 or p7) (Prn-pa or b) genotype
of mice in which they are passaged. Class II strains (22A,
22F) possess stable characteristics if passaged through
mice of the Sinc genotype in which they were isolated
but change these characteristics gradually over several
passages through mice of a different Sinc mouse
genotype. Class III strains (31A, 51C, 87A, 125A, 138A, 153A)
exhibit sudden discontinuous changes of characteristics
irrespective of the genotype of mice in which they are
passaged. All six class III strains are characterised by
similar incubation periods, the production of large
numbers of amyloid plaques [50], and a high frequency
of asymmetrical cerebral vacuolation. It is thus
conceivable that all six class III isolates represent the
same strain of scrapie agent [48].

“Class III breakdown” was defined as a “sudden
shortening of incubation period, in the course of a single
mouse passage, accompanied by a marked change in
neuropathology” [48]. This usually occurred at some
point between the primary and the 7th passage and
yielded an isolate designated 7D. The 7D strain was
characterised by a shorter incubation period, a more
“generalised” lesion profile, and an approximately 
10-fold lower frequency of amyloid plaques. All these
characteristics are reminiscent of ME7 and it is highly
probably that 7D is actually the same as the ME7 strain

Pawel P. Liberski
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of scrapie agent. The ensemble of these data favours
the existence of a host-independent scrapie genome.

It must be emphasised that although the
emergence of the new strain was independent of the
host, its selection was influenced or even governed by
the host genotype. Thus, it is misleading to describe
two given strains as having “long” and “short”
incubation periods because these characteristics are
relative and they will depend on the Sinc (Prn-p)
genotype of the mice [343,344,350]. Often the relative
incubation periods of two given strains can be reversed
on changing the mouse strain [60].

A relevant observation was made following a 1985
outbreak of transmissible mink encephalopathy (TME)
in Stetsonville, WI, USA [240]. Two strains of TME had
been isolated: one from a hyperactive mink (HY strain),
and one from a drowsy mink (DY strain). Both the
neuropathological picture and banding pattern of PrPd

of DY and HY strains differ [23,24]. Using an in vitro PrPc

to PrPd conversion reaction [64, 198] it was shown that
the conversion is “strain-specific”, i.e. HY PrPd only
converted HY PrPc, and DY PrPd only converted DY PrPc

[25]. This experiment suggested that a certain strain
specificity is encrypted within the conformation of PrP
itself, which, in turn, determines the site of proteinase
cleavage and strain-specific size of PrP fragments using
Western immunoblot.

The banding pattern resulting from the conformation
of PrP that determines the cleavage site for PK is also
regarded as strain-specific, as was subsequently
shown by experimental transmission of FFI and CJD to
transgenic mice harbouring the chimeric mouse/human
transgene [334,335]. Following deglycosylation, the
molecular weight of PrPFFI is 19 kDa while that of PrPCJD

is 21 kDa [260,275], and the size of PrPd (either 19 or
21 kDa) was retained during passage in Tg mice [334].
These observations were extended by Collinge et al.
[82], who showed that the glycosylation pattern of PrPd

also “breeds true” and indeed the preservation of this
glycotype under passage in Tg mice expressing human
PrP on a null background was accepted as “compelling
evidence” that BSE and vCJD are caused by one and
the same strain [164,312]. As summarized by Caughey
[64], these experiments suggest that “different PrPd

strains” (i.e. isophorms) can impose their different
conformations on a single species of unglycosylated
PrPc’. Caughey [64] further suggested that PrPSc may
operate on different pools of PrPc. The latter scenario
may reflect different cell (neuronal) populations in
which these PrPc molecules reside [20] or additional yet

to be discovered ligands. A recent report that nucleic
acids promote PrPc misfolding into PrPSc is extremely
interesting in this respect [92].

The most notorious example of a strain of TSE that
can be isolated from a different host is the strain which
caused vCJD and exhibits the same operational cha-
racteristics (“BSE signature”) as the causative strain of
BSE [52,164,312]. The BSE/vCJD strain is characterised
by a distinctive glycosylation pattern [82] that is also
seen in the brains of sheep infected with the CH1641
strain of scrapie [166]; however, the vCJD/BSE strain is
readily transmissible to mice whereas the CH1641 strain
is not [120]. The existence of the CH1641 strain of
scrapie underlines the fact that glycosylation patterns
may not tell the whole story about strain characteristics.
Of note, this “BSE signature” was recently identified
in a goat [116].

In scrapie-affected sheep, strains defined by classical
methods [102] also have unique glycosylation patterns
[323] that differ from BSE [337]. Having said this,
recently a new strain of BSE was discovered (BASE) that
again differs from classical BSE and, in glycosylation
pattern, is more similar to sporadic than variant CJD
[26,62]. However, the relation between strains and
glycosylation pattern may be even more complex as
the highest molecular-weight isoform was found to be
full-length diglycosylated “backbone” PrPSc while lower
molecular weight isoforms are either N-terminally
truncated PrPSc or mono- and unglycosylated full-length
PrPSc [273,274]. Furthermore, when PrPd from either sCJD
(MM2) or sporadic familial insomnia (also MM2) were
compared by 2D immunoblotting, 14 spots were exclu-
sively present in MM2 sCJD samples and all these 
differences vanished following deglycosylation. Thus,
differences between sCJD and FSI (both MM2) are
caused by different patterns of glycosylation.

When scrapie-infected mouse brains (ME&, 139A
and 22L strains) were probed with Mab 8BG, that reco-
gnized full length PrP, 3 bands were seen (34 – 37 kDa,
30 – 31 kDa and 29 kDa) which, following PNGase F
treatment, collapsed to a single band of 29 kDa 
irrespective of the strain investigated [274]. The lower
bands are full length underglycosylated PrP species.
In addition, two smaller N-terminally truncated PrP
species are present in scrapie-infected mouse brains
irrespective of the species, but the intensity of those
bands varies. Furthermore, the susceptibility to pro-
teolytic cleavage of PrPd is also the same. Collectively,
these data suggest that the pattern of PrPd species is
not a “fingerprint” of a given species.
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The “conformation stability” following denaturation
of PrPd combined with limited proteolysis by PK became
a substitute for the tedious measurement of incubation
period [209]. Using this methodology Legname et al.
[209] found a linear correlation between the incubation
period and the [GdnHcl]1/2 values that reflect the
conformational stability for both “synthetic” and
natural “strains”. Furthermore, mice with identical
incubation times exhibited identical [GdnHcl]1/2 values
to mice of an extremely long incubation period that also
exhibited extremely stable PrPd.

A second, independent, set of experiments focused
on the phenomenon of agent “competition”: different
strains of the scrapie agent can exhibit competition
when inoculated at different times, either intracerebrally
(i.c.) [104] or peripherally [103]. For example, when VM
mice (Sincp7) were inoculated i.c. with the 22C (slow)
strain a week before a second inoculation of the 22A
(fast) strain, the mice were killed by the faster 22A strain,
as shown by the short incubation period and the
characteristic “lesion profile”. In contrast, when the time
lapse before the second inoculation was prolonged to
9 weeks, the incubation period of 22A increased by 30
days, because of competition with the initially-
inoculated slow strain. In another experiment, R III mice
(Sincs7), inoculated intraperitoneally with 22A (which now
became the slow strain) followed by a second inoculation
with 22C (now the fast) strain 100 to 300 days later, did
not develop disease caused by the 22C strain. The
blocking effect of 22A was so complete that the 22C
strain did not produce disease in mice that died after
the expected incubation period of 22A. Kimberlin and
Walker [194] also studied the blocking phenomenon and
showed that the blocking agent must be capable of
replication (i.e. infectious). 

The results were interpreted as showing two different
strains competing for a limited number of multimeric
“replication sites” – subunits which are encoded by Sinc
[96,102-104]. In contrast, when mice were inoculated with
the slow (360 days) SY strain of CJD and then 80 days
later by the fast (130 days) Fukuoka-1 (FU) strain of GSS,
the FU strain was totally blocked and inoculated mice
showed no signs of FU disease 250 days post-inoculation
but eventually succumbed to the SY strain [234]. On 
a few occasions, mice showed FU rather than SY patho-
logy suggestive of incomplete suppression of the FU strain
and independent replication of either the FU or SY strains
against a background of the same PrP sequence [231].

The existence of strains may be explained by a strain-
specific oligonucleotide or a ubiquitous virus [232,236];

however, neither has ever been found despite repeated
attempts to detect disease-specific nucleic acids [7,186,
254,306]. It must be stressed, however, that even in the
most highly purified fractions containing PrPd, nucleic
acids as long as 5000 bp can readily be found [231], which
is more than enough to contain a genome of a small
albeit otherwise conventional virus [232].

All these data have been interpreted according to the
protein-only hypothesis: differences in banding of PrP
fragments as seen on Western blot reflect the diversity
of PrPd conformation, so that when PrPd is formed from
misfolded PrPc in a process of seeding-nucleation in which
PrPd acts as a seed, the existence of strain-specific PrPd

species that “breed true” suggests that strain specificity
is encrypted within the conformation of PrPd. However,
there are two caveats to this hypothesis.

First, only a few PrPd conformers have been
identified in association with the approximately 20
strains of scrapie [94], and only two major PrPd size
species (21 kDa type 1 and 19 kDa type 2) have been
isolated from human CJD. In GSS, smaller fragments,
approximately 8 kDa, were isolated, and recently an
sCJD case characterized by the presence of ~6 kDA PrP
fragment was reported [202]. Thus, if the existence of
strains is reflected merely by the size of PrPd peptides,
all of the diverse phenotypes of CJD and FFI phenotypes
are caused by just two strains, which seems highly
unlikely. Even the more complicated genotype schema
of Collinge et al. [79, 82] offers just a few conformational
“strains”.

Second, one or the other PrPd peptide (19 or 21 kDa)
may be isolated from different parts of the brain or from
brain and lymphatic tissues [276,309], which would
mean that the same individual is coincidentally
infected with both strains of the agent. Even in vCJD,
which has until recently yielded a single glycosylation
pattern (i.e. caused by a single strain of CJD according
to the “protein-only hypothesis”), two glycosylation
patterns have recently been observed [159]. In a recent
study, 9 of 50 cases presented both 19 and 21 kDa
peptides and they were mostly 129Met Val heterozygotes
[309]. It appears that accumulation of both peptides
is a rule rather than an exception and that the putamen,
medulla and the cerebellum are brain areas that 
accumulate those peptides most frequently. The same
situation is seen in GSS 102L in humans [281]. Two major
phenotypes of this form of GSS exist: one that is cha-
racterized by the presence of spongiform change
[156,216] and one without; both forms are characte-
rized by the presence of amyloid plaques. From the GSS
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phenotype with spongiform change, a 21 kDa PrP
peptide was purified, but from the GSS form without
only 8 kDa peptide was found. However, when Tg(PrP
– P101L) mice were used in transmission experiments,
only inoculum containing 21 kDa PrP peptide
transmitted the disease. The inoculum containing 8 kDa
did not transmit. Instead, large PrP deposits were seen
without clinical signs [305].

Third, if an aggregate of PrPd is a bona fide
replicating prion, then the generation of new PrPd in
in vitro conversion experiments should generate new
infectivity. Estimation of increased infectivity following
the in vitro conversion reaction has been technically
difficult because the amount of the de novo generated
PrPd is much less than the amount of original misfolded
PrPd used as a template for conversion [64]. However,
this obstacle was overcome by using misfolded PrPd

seed from a species (hamster) which is non-infectious
for the recipient species (mice) together with a chimeric
normal protein (PrPc) that can be propagated in both
mice and hamsters [163]. The failure under these
conditions to generate new PrPd [64,163] was elegantly
substantiated using transgenic mice. Transgenics with
9 extra octarepeats (PG14) developed “spontaneous”
neurodegeneration and produced PrPd that was
resistant to PK, but their brains did not transmit the
disease [76]. However, when PG14 transgenics were
infected with scrapie, both PrPd and infectivity were
observed. Thus, PK-resistance of PrPPG14 and
“spontaneous neurodegeneration” are not enough for
the creation of infectivity – on the contrary, infectivity
and “spontaneous neurodegeneration” have been
clearly separated. 

Finally, an in vitro protein misfolding cyclic
amplification (PMCA) method has been developed that
generates up to 30-fold increase in misfolded PrPd, but
initially no demonstrable increase in infectivity was
reported [299]. PMCA is, like polymerase chain reaction
(PCR), a cyclic process in which a minute quantity of
PrPd is incubated with PrPc to generate more PrPd. The
seed of PrPd must be sonicated before incubation with
PrPc. De novo generated PrPd has the same biochemi-
cal properties as PrPd derived from TSE-infected brains.
The authors believed but did not prove that, following
dilution of 10–55, no TSE-infected-brain-derived molecule
is present in the final sample, but they did not consider
a caveat in which a cofactor molecule (such as an
oligonucleotide) is copurified, even passively, with ampli-
fied PrPd. Anyway, following inoculation of “newly formed
PrPd” into recipient hamsters, scrapie-like disease deve-

loped with an incubation time much longer than that
reported for experiments with “normal” scrapie ino-
culum (177 vs. 106 days) [63]. What is more intriguing,
when the sample was further diluted (10–10 to 10–20),
shortening of the incubation time was observed instead
of the predicted increase of incubation time. Thus,
either the newly formed PrPd behaves as not “real” PrPd

(in other words, the insolubility and PK-resistance of
the newly formed PrPd are not sufficient to form a true
“prion”), or an additional cofactor is necessary to
complete the agent. Manuelidis [233] offers two expla-
nations: either carry-over of a small amount of infecti-
vity on sonication probes [368], or “intrinsically
imperfect brain homogenate dilutions”. Despite the fact
that the results of Castilla et al. [63] could not be
substantiated in subsequent experiments [27], they
were hailed as final proof of the “prion hypothesis” –
“the birth of the prion” [346]. Interestingly enough,
Bieschke et al. [27] were able to reproduce amplification
of PrPd by PMCA, but not generation of infectivity. Those
results may still be interpreted in two ways. Either
generation of a small amount of infectivity is indeed
the final proof of the prion hypothesis, or PMCA merely
amplifies amyloid PrPd in a seeded-nucleation process
that is not enough to create “a prion”. Thus, a search
for a cofactor of the shell protein (PrPd) to form the
infectious unit is still needed.

Transgenic studies and the “species barrier”
phenomenon 

The most impressive and the most complex data
suggesting either a close linkage between misfolded
PrPd and the infectious agent, or merely proving the
necessity of the PrPc-encoding gene for
infection/replication of the agent, stem from the
experiments using transgenic and knock-out mice
technologies. It must be stressed that discrimination
between these two alternatives is, at the present time,
not possible. These experiments were developed
because of the strong linkage of the occurrence of
familial and sporadic forms of TSE with specific
polymorphisms and mutations of the Prn-p gene (the
mouse gene equivalent of the PRNP gene in humans).

The term “species barrier” (better “transmission
barrier”) [340] denotes a phenomenon in which the
agent (prion) originating from one species is partially
or entirely inhibited from infecting another species,
measured either as a prolongation of the incubation
period or inability to transmit the disease. For instance,
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the 263K strain of the scrapie agent is pathogenic for
hamsters but not for mice (mice may succumb to 263K
but only after a very long incubation period of more
than 700 days [193,195]. However, when transgenic
mice were constructed with the hamster PrP gene
(TgHaPrP) [289,310] they were found to be fully
susceptible to the 263K strain of scrapie, and the
incubation periods in different lines of transgenic
animals were inversely proportional to the number of
transgene copies and amount of PrPc. 

At this point, the “replication site hypothesis”
formulated by Dickinson and Outram [96,99,100,107]
is worth recalling. These investigators hypothesized that
the scrapie agent is replicated via an interaction with 
a limited number of putative replication sites (agent
receptors) which are heteromeric products of Sinc. The
removal of replication sites, as in splenectomised [122]
or genetically asplenic mice [95], prolongs the incubation
period. Although the converse experiment (addition of
replication sites) could not be accomplished at that
time, it could be predicted that such an addition (via
acquisition of extra copies of the Sinc-PrP transgene)
would tend to shorten the incubation period, and such
an effect was indeed observed in experiments using
transgenic mice [289,310,351]. 

Although these studies did “not address the possibility
of a putative second component within the prion, such
as small nucleic acids” [311] they explicitly suggest that
the interaction between misfolded PrPd contained in the
inoculum and heterologous host PrPc is a major factor
in the transmission barrier effect (the agent strain is also
important because the species barrier is not the same
for any pair of donor and recipient strains). It was
hypothesised that such protein-protein interaction may
result in PrPd amplification (which thus merely mimics
replication), not unlike that discovered for the mutant p53
oncoprotein interaction with its wild analogue.

The hypothesis of misfolding of PrPc into PrPd as under-
lying the pathogenesis of TSE [287] gained substantial
support from studies of chimeric PrP proteins in
transgenic mice [311]. When scrapie infected-murine
neuroblastoma cell lines were transfected with chimeric
PrP genes that consisted of various combinations of four
different segments derived from either hamster or mouse
PrP gene, only those chimeric proteins that were reco-
gnised as “murine” were converted into truncated pro-
teinase K-resistant PrP27-30. Transgenic mice were also
constructed with all these chimeric PrP transgenes as well
as additional MH2M transgene that may represent an
“intermediate” between mouse and hamster PrP genes.

Analogous to in vitro studies, only those transgenics that
harboured chimeric transgene recognized as hamster PrP
were susceptible to the 263K strain of scrapie agent while
those Tg mice that harboured transgene recognized 
as “murine” were resistant to this strain, and thus
behaved like non-transgenic mice for which 263K strain
of scrapie is non-pathogenic [335,336]. 

In contrast to Tg mice with hamster PrP that were
susceptible to hamster scrapie, Tg mice constructed with
human PrP (“humanized” Tg mice) became only partially
susceptible to human CJD [336]. Construction on a null
background somewhat increased this susceptibility, and
human/hamster chimeric mice are highly susceptible to
CJD. Analogously, “bovinized” mice became susceptible to
BSE, while bovine/human transgenics were resistant [310].
These data were interpreted to mean that a host “protein
X” interacts with a mouse PrP more readily than with
human PrP, and thus blocks the interaction between
human PrP contained in the inoculum and human PrP
encoded by the transgene. Although an appropriate
surface reaction site on the globular C-terminus of PrP has
been mapped [185], the identity of “protein X” remains
conjectural and eventually quietly died away. However, in
“bovinized” transgenics obtained by the gene targeting
method and inoculation with BSE, prolongation instead
of shortening of the incubation period was observed. Thus,
identity of donor and recipient PrPs did not always lead
to an abrogation of the transmission barrier [56]. 

In contrast, Collinge et al. reported that
“humanized” Tg mice homozygous for valine (Val) at
codon 129 are susceptible to both sporadic and
iatrogenic CJD, irrespective of the status of the codon
129 genotype of the inoculum, but not for vCJD, which
is homozygous for methionine (Met) at codon 129
[11,82]. Subsequent studies documented the general
phenomenon that Met-homozygous Tg mice are
more susceptible to Met-homozygous than Val-
homozygous human CJD inocula [11]. These data
strongly suggest that the congruence of the status of
codon 129 in inoculum and the recipient mice underlies
susceptibility to infection. 

Surprisingly, a proportion of Met-homozygous Tg mice
were found to develop subclinical infection following ino-
culation with vCJD [11]. Moreover, those mice that did 
not become sick showed two different phenotypes – one
typical for vCJD characterized by the presence of florid
plaques in the brain and a type 4 glycosylation pattern,
and the other resembling sCJD with no florid plaques and
a type 2 glycosylation pattern. The latter finding led to
the suggestion that some patients diagnosed as sCJD
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might in reality represent BSE infection, and explain the
increased number of sCJD cases recently observed in
Switzerland [137]. The pattern is more complex, however
[11]. When Val-homozygous Tg mice were inoculated with
vCJD inoculum, they propagated another glycosylation
pattern – type 5 – and demonstrated a distinct neuropa-
thological picture [11]. Furthermore, Met-Val-heterozygous
Tg mice that overexpress the transgene 4–6-fold are
susceptible to sporadic or iatrogenic CJD with all three
codon 129 genotypes as well as vCJD [11]. The latter, 
however, showed no clinical signs and represent a sub-
clinical infection. Those vCJD-infected heterozygous Tg
mice readily demonstrate type 4 glycosylation pattern but 
a totally distinct neuropathological picture characterised
by no florid plaques. 

An even more complex pattern of altered
susceptibility has been observed in transgenic mice
with Leu at position 101 of the Prn-p gene (analogous
to the 102Leu mutation in GSS) obtained by gene
targeting [12,13,56,228,229]. These mice are susceptible
to the 263K strain of scrapie and to GSS, but are
partially resistant to the 22A and 79A strains of scrapie
and to vCJD, suggesting that interactions between host
PrPc and a given strain are strain-specific. 

“Spontaneous” generation of infectivity

Several lines of transgenic mice that overexpress the
mutant PrP develop “spontaneous” neurodegeneration,
of which perhaps the most notorious are mice with 
a mutation at codon 101, homologous to the codon 102
mutation associated with GSS in man (vide supra;
[170,171]). Brain tissues from these Tg mice overexpressing
the transgene were originally reported to be devoid of PrPd

on Western blot [172] but were subsequently shown to
contain PrPd-immunoreactive plaques, and were reported
to transmit spontaneous scrapie-like disease to 101L Tg
mice but with a low copy number of the transgene, but
not to wild-type mice [170]. However, these low-copy
number transgenics (Tg196) also developed spontaneous
degeneration after approximately 500 days.

In contrast, in a subsequent study of mice constructed
by means of gene targeting (thus, without extra copies
of the transgene), neither “spontaneous neurodegene-
ration” nor “disease transmission” was observed [228,
229], clearly suggesting that overexpression itself, and
not the genetic construction of the prion, is responsible
for spontaneous neurodegeneration. Furthermore,
reported transmission from MoPrP(P101L) transgenics
[171] seems to be only upregulation of the transgene to
accelerate already incubating “spontaneous disease”

[263]. Another experiment along those lines was reported
recently by Legname and colleagues [207], in which
recombinant PrP (rPrP) composed of residues 89-230
(recMoPrP(89-230)) obtained in E. coli was converted into
β-fibrillar form [29] and injected into transgenic mice
Tg9949 overexpressing the same sequence of PrP.
Tg9949 mice became sick following injection of 
a preparation of β-fibrillar rPrP purified from E. coli after
380-660 days, but remained healthy after sham inoculation
with PBS. There is a caveat here. Tg9949 mice were never
observed (or at least reported) long enough (longer than
670 days) to exclude spontaneous neurodegeneration
resulting from transgene overexpression as in the case
of Tg mice overexpressing normal PrP [349]. In a further
experiment Legname et al. [208] passaged “synthetic
prions” to both transgenic and wild type FVB mice. The
latter passage, however, produced two different isolates
of different incubation times and neuropathological
profiles. Again, it is not consistent with a single
polypeptide, recPrP(89-230), primarily injected into the
brains of tg mice. These recPrP(89-230) peptides
produced 3 novel fragments: 12 kDa, 10 kDa, and 8 kDa
[29, 30] and adopted β-fibrillary-rich conformations. Of
interest, those recombinant peptides exist in two forms:
the β-oligomer and the amyloid form [29]. 

Proof that PrP is crucial for the pathogenesis (but
not necessarily for the infectious agent) came from
knock-out mice (PrP0/0) experiments [53,54]. These mice
showed no clinical abnormalities during their normal
life span [38,54] although hippocampal brain slices were
reported to show impaired GABA receptor-mediated
fast inhibition and long-term potentiation [83]. More
importantly, these PrP0/0 mice proved to be completely
resistant to scrapie infection [53,287], and hemizygous
mice (Prp+/0) showed a prolonged incubation period.
These results in effect “completed” the classical
studies of asplenic mice [95] by reducing the number
of peripheral and central replication sites to zero.
Recently, cattle lacking PrPc were also constructed and,
like mice, they are resistant to BSE and healthy [290].
Although these experiments do not solve the problem
of the nature of the scrapie agent, they do provide
definitive proof that the PrP gene is indispensable in
scrapie pathogenesis (and eo ipso in the development
of clinical disease). 

PrP gene mutations and TSE phenotypic
expression 

Specific changes in the PrP gene sequence are
associated with different phenotypic expressions of the TSE.
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As already mentioned, the scrapie incubation period both
in mice and in sheep is controlled by Prn-p
(classical names for this gene are Sinc and SIP,
respectively, in mice and sheep). The early evidence for
this linkage [97,98,100,105-107] was followed by the
discovery of polymorphisms within the Prn-p gene
which are linked to allelic differences affecting the
length of the incubation period [57-59,350]. In mice,
there are two major alleles, Prn-pa and Prn-pb, which
differ at codon 108 and 189 [350]. The Prn-pa allele
encodes 108L and 189T while Prn-pb allele encodes 108F

and 189V. Using gene targeting, it was demonstrated that
these polymorphisms control the incubation period in
mouse scrapie [261]. Equivalent linkages were soon
discovered in sheep [178,179]. For instance, Cheviot
sheep with Val at codon 136 are susceptible to the
SSBP/1 strain of scrapie, while those with Ala at this
codon are not [177,179]. However, the linkage between
haplotypes of PrP (SIP) gene in sheep and the
susceptibility to other strains is extremely complex, and
does not appear to depend on the presence of naturally
occurring scrapie: sheep in Australia, where there is no
scrapie, exhibit the same “susceptible” haplotypes as those
elsewhere [178]. 

In man, the obvious candidate for such a linkage
analysis was Gerstmann-Sträussler-Scheinker (GSS)
disease and other familial forms of CJD [216,217,221,
244], and it was soon discovered that the expression
of GSS is linked to a mutation (substitution of Pro with
Leu) at codon 102 of the PRNP gene [167]. Several other
mutations followed: two GSS families (from Indiana, USA
and from Sweden), characterised by the occurrence of
microtubule-associated protein (MAP)-τ-positive
neurofibrillary tangles not unlike those of Alzheimer’s
disease [133,329], are linked to mutations at codon 198
(Phe to Ser) and 217 (Gln to Arg), respectively [115,168].
Familial CJD cases from all three known world clusters
in Slovakia (“Oravske kuru”) [148,150,258], Israel
[147,169], and Chile [40] are linked to the codon 200
(Glu to Lys) mutation. Curiously, 200Lys is associated not
only with CJD in the “wandering Jew of the Diaspora”
[21,44,127,142], as it has recently been discovered in 
a Japanese family [180]. Other CJD families are linked
to mutations in codon 178 (Asp to Asn) [45,117,146,
205,264], as is fatal familial insomnia [149,260], which
had been classified as “thalamic dementias” before its
transmissibility was proved [81,333]. To date, more than
30 mutations (missense, nonsense and inserts) have
been reported, and the number of new mutations may
continue to grow [41-43,46,140,141,143,271].

The polymorphism at codon 129 merits special
comment. Codon 129 encodes Met in 62.5% and Val in
37.5% of alleles in the normal Caucasian population
[150,269,272]. However, in all forms of CJD, there is marked
over-representation of homozygotes over heterozygotes
[80,93,259,272]. In vCJD all the clinical cases are MM
homozygotes. The codon 129 polymorphism may also
exert a modifying effect on the phenotypic expression
of a given PRNP mutation; for instance 129Val is coupled
with 198Ser or 217Arg in GSS [115,167], and 129Val 178Asn is
linked to a CJD phenotype, whereas 129Met 178Asn is linked
to fatal familial insomnia [145]. PrP proteins purified from
familial CJD with 178Asn and fatal familial insomnia are
different, and these differences are probably
conformational [260]. 

Three lines of transgenic mice (MM, MV, and VV)
were produced by gene targeting methods and inocu-
lated with vCJD [56]. All these lines were susceptible
to vCJD, with the shortest incubation period in MM mice
and the longest in VV mice. These results suggest that
all individuals may be susceptible to vCJD, but vCJD in
VV homozygotes may yet to be observed, and thus
epidemics of vCJD may be yet to occur.

The situation with kuru is particularly interesting.
The practice of endocannibalism underlying the kuru
epidemic created a selective force on the prion protein
genotype [4,39]. As in CJD, homozygosity at codon 
129 (129Met Met or 129Val Val) is overrepresented in kuru
[68,144,213]. However, Mead et al. [248] found that
among Fore women over fifty years of age, there is 
a remarkable overrepresentation of heterozygosity
(129Met Val) at codon 129, which is consistent with the
interpretation that 129Met Val makes an individual
resistant to TSE agents and that such resistance was
selected by cannibalistic rites. Because of this 129Met Val

heterozygote advantage, it has been suggested that
the heterozygous genotype at codon 129 has been
sustained by a widespread ancient practice of human
cannibalism [91,237].

The existence of familial TSEs (fTSEs – namely fCJD,
GSS and FFI) caused by mutations in the PRNP gene
may also be interpreted two ways. According to the
protein-only hypothesis, any given mutation may
change the energy barrier for a misfolding of PrPc into
PrPd and thus cause disease. According to the virus
theory, the mutation merely changes the susceptibility
to a ubiquitous virus [66,231]. There are precedents for
such a mechanism: mutations responsible for sickle cell
disease or thalassaemias increase susceptibility to B19
parvovirus. 
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PrP as amyloid: the concept of transmissible
cerebral amyloidosis

Amyloid plaque has long been recognised as 
a hallmark of the neuropathology of some TSEs, especially
kuru and GSS [197] – indeed kuru was nicknamed the
“galloping senescence of the juvenile” [127] – and it is
possible that kuru originated from the core of GSS 
incidentally cannibalized (Liberski – Budka, personal
communication). More than three decades later, it was
established that the amyloid plaque of TSE was mostly
composed of misfolded PrPd. As a result, Gajdusek
suggested calling PrP 27-30 “scrapie amyloid”
[126,127,301-304] and proposed that the conversion 
of normal into misfolded protein may become 
“autocatalytic when the baby crystals continue the
pattern-determining nucleation process” [125]. Fibrillar
structures isolated from TSE-affected brains (SAF or
prion rods) are morphologically very similar to, but
distinguishable from, many other amyloid fibrils when
visualised by negative-staining electron microscopy
[252,253,288]; however, due to technical problems
associated with protein insolubility, direct evidence for 
a cross β-pleated secondary structure of PrPd was
obtained only within the last decade. Using infrared
spectroscopy, which correlates the infrared spectrum
with the secondary structure of proteins and does not
require the protein to be in solution, Caughey et al. [67]
showed that PrP 27-30 contains a high proportion of 
β-pleated sheet, which was later quantified by Gasset
et al. [130, 131], who estimated the proportion 
β-conformation to be approximately 50% of the entire
structure. Denaturation by either SDS or high pH reduces
both scrapie infectivity and β-pleated content [47].

The predicted conformation of PrPc suggested four
α-helices and two β-strands [173], whereas the
conformation of PrPSc is largely β-pleated. However, the
conformation of synthetic peptides derived from
regions of predicted secondary structures of PrP had
a protean nature. Gasset et al. [131] demonstrated that
H1 (the first helix) in vitro is in a cross-β-pleated
conformation; H2 may form either α-helix or β-strand
or a β-turn; while H3 and H4 have a β-strand structure.
Furthermore, Heller et al. [162] showed that H1 may
have either an α-helix or β-strand conformation.
Collectively, these studies indicate that PrP is able to
form either α-helices or β-pleated sheets and
conversion from α-helix into a β-sheet may underlie
the formation of prions. Indeed, using the hamster
recombinant protein (r)PrP (residues 90-231) Mehlhorn

et al. [251] demonstrated that the same peptide may
form stable α-helix or β-sheets with several
intermediates. All these data point to an inherent
propensity of PrP to exist in different conformations,
and Jackson et al. [182] showed that even a truncated
form of PrP containing only residues 91-231 may adopt
multiple conformations dependent on pH, redox
conditions and denaturant concentration.

Using NMR spectroscopy, Riek et al. [28,291,292]
found the secondary structure of mouse PrP (residues
121-231) in solution to consist of three α-helices and two
antiparallel β-strands at the globular C-terminus, with
a largely unstructured (flexible) N-terminus. Similar
conformations characterized a longer recombinant PrP
(residues 23-231) fragment [292] as well as conformations
of hamster [183,223], bovine [224], and human [366] PrPc.
A comparison between human, mouse and bovine PrP
demonstrated that human and bovine PrPs exhibit
virtually identical conformations [224], and because
species susceptibility is strongly influenced by PrPc

conformational similarity, humans may be presumed to
be a species “of choice” for BSE infection. 

The level of glycosylation may affect the structure
of PrP. As already mentioned, both the normal and
misfolded proteins possess two N-glycosylation sites
at N181 and N197, and an O-glycosylation is also possible
through Ser-132 and Ser-135 [73]. Studies of a synthetic
PrP 109–144 [73] demonstrated that the addition of
αGalNac at Ser135 suppressed spontaneous in vitro
fibril formation, whereas addition of 132-αGalNac at the
same site stabilized the β-structure and increased fibril
formation.

Further complexity of PrP conformational changes
was evidenced by observations of two-dimensional
crystal preparations of PrP 27-30 and its analogue
PrPd106 (“miniprion”), the shortest truncated form 
of PrP which still retains infectious properties [354].
Analysis of these two-dimensional lattices suggested
the existence of a new form of PrPSc – the so-called 
β-helix. Furthermore, CD and NMR studies of PrP pep-
tide 142-166 spanning helix 1 and β-strand 2 revealed
an additional β-hairpin structure [200].

It is now widely accepted that many structurally diverse
proteins can misfold and cause so-called “conformational
diseases”, including the most common neurodegenera-
tions, Alzheimer’s disease and Parkinson’s disease [313].
The conversion of largely α-helical or random coil
proteins into cross-β-pleated sheet conformations that
form first oligomers and then fibrils underlies these
disorders. However, this α- to β-structure transition seems

Prion diseases: a riddle wrapped in a mystery inside an enigma
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to be a generic propensity of all globular proteins, not only
those involved in neurodegenerations [29]. Metaphorically,
all these neurodegenerations are “infectious” in the sense
that misfolded β-sheeted conformers are formed in 
a nucleation process in which pre-formed metastable
oligomer acts as a seed (a nucleus) to convert a normal
into an abnormal protein. However, in none but TSE has
infectivity in a microbiological sense ever been observed,
and even in TSE the formation of misfolded protein is not
necessarily accompanied by the generation of infectivity
de novo. Surprisingly, GSS P102L inoculated into Tg
PrP(P101L) mice produced no clinical disease bur robust
PrPd deposition. That may suggest that certain “prion
diseases” are not TSEs but just “proteinopathies” caused
by accumulation of abnormally misfolded PrPd [13]. The
presence of a massive amount of PrP-amyloid and no
infectivity casts doubts on whether TSEs are really
infectious amyloidoses [281]. Additionally, when PrPSc was
solubilized with the chemical chaperone dimethyl
sulfoxide (Me2SO) and then Me2SO was removed,
solubilized PrP reformed into oligomers with only 
a minimal amount of infectivity [314]. The misfolding of PrP
may yet prove to be an epiphenomenon secondary to
infection with a still unknown infectious agent [215,232].

If, on the other hand, the purely proteinaceous 
character of the replicating unit of TSE infectivity is
ultimately found to be correct, the critical issues become
1) the mechanism by which a misfolded PrP template
induces normal protein molecules to adopt the same
pathologically misfolded conformation, and 2) the
intracellular conditions that are responsible for strain
differences in these molecules. The search goes on.
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