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Subependymal plaques in scrapie-affected hamster brains 
– why are they so different from compact kuru plaques?
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A b s t r a c t

We report here routine thin-section and immunogold electron microscopic studies on diffuse plaques in scrapie-affected
hamster brains. These plaques were not discernible by routine H&E staining. Ultrastructurally, plaques were recognized as
areas of low electron density containing haphazardly-oriented fibrils, but not as stellate compact structures typical of
mouse scrapie models; hence we labelled them “loose plaques”. Following immunohistochemistry at the electron
microscopy level, fibrils within plaques were heavily decorated with PrP-conjugated gold particles. Loose plaques were
located beneath the basal border of the ependymal cells and around blood vessels in the adjacent subependymal neuropil.
When dystrophic neurites containing electron-dense inclusion bodies, some of them autophagic vacuoles [59], were seen
within the plaque perimeter, they always remained PrP-negative. Some microglial cells were observed in close contact with
PrP-positive plaques, and secondary lysosomes within these cells were heavily decorated with gold particles. 

KKeeyy  wwoorrddss::  prion diseases, transmissible spongiform encephalopathies, scrapie, amyloid plaques.

CCoommmmuunniiccaattiinngg  aauutthhoorr::

Prof. Paweł P. Liberski, Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz,

Czechosłowacka Str. 8/10, PL 92-216 Lodz, Poland, tel./fax: +48 42 679 14 77, Email: ppliber@csk.am.lodz.pl

Introduction

Transmissible spongiform encephalopathies
(TSEs), also known as prion diseases or transmissible
brain amyloidoses, are neurodegenerative diseases
caused by a still incompletely characterized infectious
agent that, according to the most widely, albeit not
exclusively [1,6,48], accepted theory, is designated 
a “prion” [35,39,57]. The accumulation of PrP amyloid
is a crucial event in TSE pathogenesis [1,18]. This
protein is derived from a host-encoded cell-surface
sialoglycoprotein known as PrPc. The disease-specific
form is a misfolded isoform of PrPc known as PrPTSE

or PrPd (where “d” stands for disease). PrPd may be

formed by a process of nucleation or a template-
directed polymerization from its normal cellular
isoform PrPc. During this conversion, PrPc changes
its conformation from predominantly an α-helical
structure into β-pleated or β-helical form [56].
Thus, TSEs are diseases of protein misfolding,
diseases of protein conformation [10] or, according
to Beyreuther and Masters’ [5] poetic term,
“protein cancers”. 

PrPd, also known as “PrP-amyloid”, is deposited

extracellularly in the form of amorphous or primitive

plaques, classical (kuru) plaques and as congophilic

angiopathy [38]. Kuru plaques are observed in all
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cases of Gerstmann-Sträussler-Scheinker disease

(GSS), the majority of cases of kuru, and a small

proportion of cases (approximately 10-15%) of

Creutzfeldt-Jakob disease (CJD) and chronic wasting

disease in cervids [20,21,36,49]. Amyloid plaques also

constitute a hallmark of neuropathology of scrapie

[24] and CJD models in rodents [31]. Furthermore,

hydrated or hydrolytic autoclaving methods coupled

with PrP immunohistochemistry enables the

demonstration of different types of PrPd accumulation

in all TSEs studied thus far and has became the

current standard among tests to diagnose TSE at the

tissue level [22,30,33,34,45,58,64].

In electron microscopy, extracellular PrP-amyloid

plaques are confined to the CNS and consist of

different proportions of amyloid fibrils, dystrophic

neurites and microglial cells [47]. The latter cells 

may function as amyloid scavenger cells because

intra-microglial PrPd may be detected in lysosomes in

areas without amyloid fibrils: this suggests these cells

take up or accumulate excess PrPd. Most amyloid

plaques in TSE which are visible at the light microscopy

level are characterized by a compact stellate core and

relative paucity of dystrophic neurites and microglial

cells; these are called “kuru” plaques or, if they merge

as in GSS, multicentric plaques [3,11,51]. Some plaques

do not exhibit, however, such compact architecture but

rather loose tissue structure with amyloid fibrils still

discernible within it. 

We report here routine thin-section and silver-

enhanced immunogold electron microscopic studies

on diffuse plaques in scrapie-affected hamster

brains. While such plaques were first observed

almost 20 years ago by Wiley et al. [62], this is the

first detailed ultrastructural study of those plaques,

which differ considerably from compact “kuru”

plaques encountered in scrapie-affected mouse

brain. It is thus plausible that the morphology of PrP

deposits is influenced not only by a particular strain

of the agent but also by species-specific local brain

microenvironment [17]. 

Material and Methods

AAnniimmaallss  ssttrraaiinn,,  eexxppeerriimmeennttaall  pprroocceedduurreess

All procedures were performed according to rules

promulgated by the National Institutes of Health.

Two groups (5 animals in each group) of outbred, 

6-week-old golden Syrian hamsters were inoculated

intracerebrally with 0.05 ml of a 10% brain

suspension of either the 263K or 22C strain of

scrapie (kindly provided by Dr. Richard Kimberlin,

SARDAS, Edinburgh, UK and Dr. Richard Carp, IBR,

NY, USA, respectively). These strains are widely used

experimental tools primarily because of their

relatively short incubation periods, which ranged

from 9 to 10 weeks for the 263K strain and 

24-26 weeks for the 22C-H strain. Two control

hamsters from the same colony were sham-

inoculated with saline. The clinical endpoint was

defined when animals developed unequivocal signs

of disease – ataxia, tremor, ruffled fur, urine and

bowel incontinence (fur was stained with urine and

faeces) and, for the 263K strain, head bobbing – 

a rhythmic up and down shaking of the head.

EElleeccttrroonn  MMiiccrroossccooppiicc  EExxaammiinnaattiioonn

Following deep ether anaesthesia and injection of

1 ml of heparin into the heart, terminally ill hamsters

(5 animals inoculated with the 263K and 5 animals

inoculated with the 22C-H strain) and 2 age-matched

control animals from each group were sacrificed by

intracardiac perfusion with 100 ml of 1.25%

glutaraldehyde and 1% paraformaldehyde prepared in

cacodylate buffer (pH 7.4) followed by 50 ml of 5%

glutaraldehyde and 4% paraformaldehyde. To this

end, an animal was pinned on its back, the thorax was

opened wide around the sternum and the abdominal

part of the aorta descendens was clamped. Then, the

right auricle was cut and a tube was inserted through

the incisure in the left ventricle into the aorta

ascendens. Perfused carcasses were kept at 4°C for 

2 hours before the brains were removed and rinsed in

cold fixative overnight. Samples (1 mm3) of the right

parietal cortex and adjacent corpus callosum, the CA1

region of the hippocampal formation, the thalamus

and the subventricular regions were dissected, rinsed

in phosphate buffer, postfixed in 1% osmium

tetroxide, dehydrated through a graded series of

ethanols and propylene oxide and embedded in

Embed (Electron Microscopy Sciences, Ft. Washington,

PA). Ultrathin sections were stained with lead citrate

and uranyl acetate, and specimens were examined

with Philips 300, JEM 100 CDX and Zeiss EM 109

transmission electron microscopes.

IImmmmuunnooggoolldd  pprroocceedduurreess

The immunogold methods employed for ultra-

structural localization of PrPd were as previously
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FFiigg..  11..  Low power electron micrographs of “loose plaque” (arrowheads) in scrapie-affected hamster brain.
Note that plaques developed in the subependymal region; numerous glial processes (GP) are visible in the
vicinity as well as dystrophic neuritis (DN) and some synaptic terminals containing synaptic vesicles (SV)

described [41]. Briefly, these methods are as follows.

65-80 nm sections were taken from blocks previously

identified as containing accumulations of PrPd after

light microscopy of stained 1 μm sections. Sections

placed on 400 mesh nickel grids were etched in

sodium periodate for 60 minutes or in potassium

methoxide DMSO for 15 minutes. Endogenous

peroxidase was blocked and sections de-osmicated

with 3% hydrogen peroxide in methanol for 

10 minutes. Antigen expression was enhanced with

formic acid for 10 minutes. Primary antibodies 

(1B3 and 1A8, kindly supplied by Dr. James Hope, MRC

& BBSRC Neuropathogenesis Unit, Edinburgh,

Scotland) were then applied in 1:100 dilution or 1:400,

respectively, in incubation buffer for 1 hour. After

rinsing, sections were incubated with Extravidin 1 nm

colloidal gold diluted 1:10 in incubation buffer for 

1 hour and silver enhanced. Grids were postfixed with

2.5% glutaraldehyde in PBS and counterstained with

uranyl acetate and lead citrate.

Results

The subependymal region from control hamsters

was entirely normal. By light microscopy and semi-

thin (1 mm) sections, discrete PrPd-immunopositive

amorphous plaques were observed in both the 263K

and 22C-H models in the subependymal region but

not in the deep brain neuroparenchyma (data not

shown). No differences were observed using either 1B3

or 1A8 antibodies. These plaques were discernible

neither by routine H & E staining nor by Congo red

staining; thus, they are, by definition, not amyloid

plaques. Ultrastructurally, plaques were recognized as

areas of low electron density containing haphazardly-

oriented fibrils (Fig. 1) and, following the immunogold
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FFiigg..  22..  An electron micrograph of “loose plaque” in scrapie-affected hamster brain. Note amyloid decorated
with silver-enhanced gold particles

procedure, heavily labelled with PrPd-conjugated 

silver-enhanced gold particles (Fig. 2), but not as

stellate compact structures designated “kuru-

plaques”. These plaques were located beneath the

basal border of the ependymal cells and around blood

vessels in the adjacent subependymal neuropil, the

fine structure of which was clearly recognizable. When

dystrophic neurites containing electron-dense

inclusion bodies were seen within the plaque

perimeter, they always remained PrPd-negative 

(Fig. 3). Some microglial cells were observed in close

contact with PrP-positive plaques and secondary

lysosomes within these cells were heavily labelled

with gold particles (Fig. 4). In these two scrapie models

neither stellate plaques nor PrP-immunodecorated

dendrites were observed.

Neuronal processes containing tubulovesicular

structures (TVS), 25-37 nm virus-like particles specific

for all TSEs at the level of thin-section electron

microscopy and regarded as disease-specific [42,48],

were observed in the vicinity of loose plaques (Fig. 5).

Furthermore, TVS-like particles were seen attached to

amyloid fibrils floating within loose plaques (Figs. 6, 7).

Discussion

We have demonstrated that PrPd-immunoreactive

amyloid plaques in scrapie-affected hamster brains

are located mostly beneath the ependymal border.

They exhibit not the compact structure of the kuru

plaque but rather randomly-oriented amyloid fibrils

deposited within expanded extracellular space with

an admixture of dystrophic neurites and microglial

cells. We thus confirm the plaque pattern first

described by DeArmond [13-15]. In addition to their

observations, we showed that microglial cells not only



Folia Neuropathologica 2008; 46/1 36

Beata Sikorska, Paweł P. Liberski, Paul Brown

FFiigg..  33..  An area of loose plaque heavily decorated with silver-enhanced gold particles (arrows). Note that 
a dystrophic neurite (DN) is largely free from immunogold deposits (only one immunogold-silver enhanced
deposit on the neurite – arrowhead). Original magn. × 12 000

contain cellular debris but are also heavily labelled

within secondary lysosomes [2,8,9,40,50,53]. Overall

then, PrPd-subependymal plaques in scrapie-affected

hamster brains are different from those observed in

mouse brain infected with the 87V strain of scrapie

agent and also different from typical kuru plaques of

human TSE [24-29,36]. The sequence of events which

leads to formation of the amyloid plaque is not yet

clear. In the 87V mouse model, immunogold electron

microscopy demonstrated PrPd on the cell membrane

before fibrilization, which suggests that PrPd is

initially shed into the extracellular space where the

amyloid fibrils are formed [25,27]. The assembly of

fibrils may be a subsequent and entirely spontaneous

process of nucleation, and indeed recent in vitro

experiments suggest that PrPd is generated from its

precursor (PrPc) as a result of protein-protein (PrPd –

PrPc) (reviewed in: [10]) interaction (nucleation rather

than template-directed polymerization). How these 

in vitro experiments reflect the in vivo situation of the

amyloid plaque formation has not yet been

established but it is tempting to suggest that the

microglial cell may provide a microenvironment for

such a conversion [3,51]. The exact role of this cell is,

however, also totally unclear [63]. The presence of

PrPd within the lysosomal-endosomal system has

been clearly demonstrated by numerous investigators

including ourselves [2,14,15,40,53], but it is subject to

ambiguous interpretation. It may merely reflect the

phagocytosis of PrPd. However, earlier work on in vivo

generation of PrPd from PrPc suggests that PrPd, like all

other brain amyloids including Aβ of Alzheimer’s

disease and α-synuclein of Parkinson’s disease and

dementia with Lewy bodies, is generated somewhere

along the lysosomal-endosomal pathway, and the

presence of PrPd within this compartment strongly
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suggests that the microglial cell is the cell in which

the conversion may take place [3,54,55].

The concept of scrapie as a brain amyloidosis

first envisaged by Gajdusek [19] has evolved for the

last two decades since the description of various

forms of brain amyloids in GSS [49] and the

demonstration of amyloid fibrils in all TSE. Like

amyloidoses in general and brain amyloidoses in

particular, accumulation of PrPd follows the same

characteristic pattern. Mutations in a gene (PRNP in

humans; Prnp in lower mammals) which encodes for

amyloid precursor (PrPc) cause PrP-amyloidosis in

familial forms of a disease (GSS or CJD) and

different mutations are linked to diverse phenotypic

expression of these diseases (for review: [32]). The

same amyloid accumulates in sporadic cases in

which no mutation in the gene encoding for PrP is

found; this is probably accomplished via poorly

understood post-translational conformational

modifications. Furthermore, overexpression of

either the mutated or wild-type gene encoding for

PrPc in transgenic animals leads to the development

of “spontaneous” disease which in many aspects

resembles TSE [16,23,52,61]. However, if transgenic

mice are produced with one copy of a transgene

(thus, without over-expression), no disease is

observed [4]. Collectively, these results point to 

a crucial role of PrP as “scrapie amyloid” and, by the

same token, encourage further studies on the

pathogenetic mechanisms by which it is formed.

FFiigg..  44..  Secondary lysosome from a microglial cell; the lysosome is heavily decorated with immunogold.
Original magn. × 50 000
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FFiigg..  55AA--BB..  Low (A) and high (B) power electron microscopy picture to demonstrate a neuronal process
containing TVS. A. TVS – tubulovesicular structures. B. Arrows (TVS), Mt – microtubules
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BB
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FFiigg..  66..  TVS-like particles (arrows) attached to amyloid fibrils floating within loose plaques

Exactly how PrPd exerts its deleterious effect on

brain tissues is not clear. Many in vitro experiments

suggest that PrP, or at least a part of its sequence, is

intrinsically neurotoxic and that this neurotoxicity

leads to apoptosis of affected neurons [7,37,44,46,60].

Whether the neurotoxic effect requires a β-pleated

conformation of PrPd is unknown. The same uncer-

tainty applies to other “conformational disorders”,

such as Alzheimer’s disease, in which Aβ peptide

deposits extracellularly in a form of amyloid plaques. It

is possible that amyloid plaques composed of fibrils in

a β-pleated conformation are merely “tombs” of

distorted protein which are too aggregated to be

removed by naturally occurring cellular proteases. 

The relation, if any, between “loose” plaques

described here and the compact plaques (kuru and

multicentric plaques) is completely uncertain. Two

basic scenarios may be envisaged. The first is that the

subependymal plaques precede the formation of

compact plaques. This seems unlikely, however,

because the location of compact plaques is different

from that of loose plaques (compact plaques are

encountered mostly in the cerebellum, “loose”

plaques in the subependymal region). A more

plausible hypothesis suggests that the electron-

lucent environment in which amyloid plaques “float”

makes them readily visible, which is not the case in

the neuropil, which is, per se, highly fibrillar. To this

end, when plaques are retrieved from formalin-fixed,

paraffin-embedded material, most of the neuropil

structure is destroyed and many PrPd-amyloid fibrils

become visible [43,47]. Thus, “loose” plaques are, in 

a sense, an artefact of the microenvironment that

does not obscure their presence. It thus seems that

simple PrPd amyloid may take many different forms

such as those discriminated by light microscopic

studies.

The presence of tubulovesicular structures (TVS),

27-35 nm virus-like particles in close association with

loose plaques, and also TVS-like particles attached to

amyloid fibrils floating within loose plaques is

intriguing. TVS have not only been found in all TSEs

[42] but also were recently observed in scrapie-

infected cells in vitro [48]. For those who are not

totally convinced by the prion hypothesis, their 

close association with PrPd amyloid fibrils may
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